Technical Guide

Practical Guide to
Modern Networking
Telemetry

How Telemetry Can Be Used to See Into Your

O'REILLY"
~ Network's Performance and Usage Patterns

\ Compliments of‘
Ze]d\VAl < kentik.

Release

RAW &
UNEDITED

Avi Freedman & Leon Adato

kentik.

The Network Intelligence Platform

Take the hard work
out of running
your network.

UNDERSTAND EVERY:

v Cloud
v/ Network

v/ Container

< BOOK A DEMO TODAY)

The world's best infrastructure teams trust Kentik:

Zoom m box Camwa servicenaw 33 Dropbox

www.kentik.com

https://www.kentik.com/go/get-started/demo/

Practical Guide To Modern

Networking Telemetry
How Telemetry Can Be Used to See Into

Your Network’s Performance and Usage
Patterns

With Early Release ebooks, you get books
in their earliest form—the authors’ raw and
unedited content as they write—so you can take
advantage of these technologies long before the
official release of these titles.

Avi Freedman and Leon Adato

O'REILLY"

Practical Guide To Modern Networking Telemetry
by Avi Freedman and Leon Adato

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Megan Laddusaw Interior Designer: David Futato
Development Editor: Gary O’Brien Cover Designer: Karen Montgomery
Production Editor: Katherine Tozer lllustrator: Kate Dullea

August 2025: First Edition

Revision History for the Early Release

2025-03-26: First Release
2025-07-31: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9798341608900 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Guide
To Modern Networking Telemetry, the cover image, and related trade dress are
trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Kentik. See our statement
of editorial independence.

979-8-341-60888-7
[FILL IN]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9798341608900
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Brief Table of Contents (Not YetFinal).ccvvvvevevnenn.. vii
Introduction............oooiiiiiiiiiii ix
1. Network and Telemetry Introduction.......................... 17
What IS Network Telemetry, Redux 17
Anatomy of a Network 20
Common Telemetry Types: The Four Pillars 27
Types of NETWORK Telemetry 28
Collecting data, network style 34
2. WranglingTelemetry.......c.covvviiiiiiiiiiiinnieiinnennnes 41
Transport 43
Enriching Telemetry 59
Normalizing Telemetry 64
Data Storage and Query 71

Chapter Summary 82

Brief Table of Contents (Not Yet
Final)

Introduction (available)

Chapter 1: Network and Telemetry Introduction (available)
Chapter 2: Wrangling Telemetry (available)

Chapter 3: Intro to Using Telemetry (unavailable)

Chapter 4: Using Telemetry, Individually (unavailable)

Chapter 5: Using Telemetry, Together (Network Layer) (unavailable)

Chapter 6: Using Network Telemetry, Combined with Other Layers
(unavailable)

vii

Introduction

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the authors’ raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the Introduction of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
gobrien@oreilly.com.

About Modern Network Telemetry

Right at the outset, you may be asking yourself, “What’s so impor-
tant about Network Telemetry? What can it really do to make my
work or network measurably better? This is not only an understand-
able question, it’s a pretty common one that we hear. A lot. After
all, the most important work done by IT practitioners is designing,
implementing, and maintaining systems and architectures. Much of
monitoring and observability needs to be set up in advance, with the
benefit often coming into play only after something has gone wrong
(and sometimes only after it's gone catastrophically wrong!).

So before diving into the tools, techniques, and technologies, we'll
take a minute to talk about “the network” and step back and discuss

the benefits and return on investment that building robust observa-
bility options into your infrastructure can bring.

What Is “the network,” exactly?

Back in 2023, in his book “The Ultimate Guide to Network Observ-
ability”, Avi wrote,

“People often refer to ‘the network’ in their organizations, but in
most cases the network isn’t one entity. It's a complex, diverse, frag-
mented, and loosely interconnected set of physical and virtual links
and equipment, and it’s housed in a variety of places, including data
centers, corporate wide area networks (WANSs), private and public
clouds, the internet, container environments, and even inside hosts.
Organizations own and control some of those resources but simply
pay to use others”

Since that time, things remain largely the same. Sure, the cloud
has gotten more cloudy (meaning opaque to users) even as it has
become more ubiquitous within organizations large and small. And
at the same time corporate LAN and WAN environments have not,
by and large, become less complex (or sprawling, or expensive).
In fact, the opposite has been true. Even as company’s investment
in cloud has increased, so too has their investment in on-premises
networking gone up.

What Is “network telemetry,” exactly?

Network telemetry refers to the data FROM and ABOUT your net-
work, both from your network elements and from watching data
moving through your network.

That includes simple things like device types, basic hardware met-
rics, and so on. But it also extends to status and performance
information about the data moving around the network: source,
destination, protocol, and more.

All of this makes network telemetry important (and valuable) for
several reasons:

Infrastructure Performance and Health - Uptime, Health, Planning
In order for user and application traffic to flow well across the
network, the devices themselves need to be functioning well,

X | Introduction

with enough CPU and RAM capacity, healthy hardware and
optics, and links that work and aren’t too full.

Watching logs, metrics, traffic flow, configurations, and other
network device telemetry (plus a bit of active performance test-
ing) is critical to running a great network.

Network and Application Performance

All of the traffic for users and applications becomes packets
flowing across the network, and the network is a great source of
truth for shining light on both the net “composed” performance
of the system, and even into applications that are having perfor-
mance problems.

Cost

At current infrastructure scale, cost can be enormous for many
companies, and optimizing the network infrastructure often is
a full time job - or more. Combining network telemetry with
business data about cost can drive huge savings that often fund
the entire network observability stack.

Life Cycle Automation Support

Everyone’s eager to move their application to the cloud, but
is it really performing better there? Network telemetry helps
you see the before, during, and after changes from more minor
to whole migrations so you can be certain youre getting the
improvement you think youre paying for - and didn’t break
anything!

Security

Network telemetry remains a fast and great way to identify most
cybersecurity issues, such as DDoS attempts, compromise and
lateral movement, and the impact of botnets.

About You (“Is this book for me?”)

This book is for you if any of the following things are (or might be)
true:

 Youd describe yourself as a “learn and do” kind of person.

» You are comfortable with application monitoring and observ-
ability, but not networking, and youd like to find out how

Introduction | xi

network monitoring and observability are different (and benefi-
cial!)
» You are comfortable with networking, but not monitoring and

observability, and youd like to find out how network monitoring
and observability are different (and beneficial!)

 You build, maintain, support, or are simply curious about “the
network” and the ways in which network performance impacts
everything that rides on top of it, from the data to the applica-
tion to the overall user experience.

o You know how to look at a dashboard and interpret data
presented in charts and graphs, but you want to understand
how monitoring and observability data are represented in those
forms.

On the flip side, what does this book presume you already know?
To be honest, there’s not a lot of requirements. Throughout this
guide, we'll not only provide detailed information on terms and
technologies, we'll point you to external content when we think
some readers might appreciate a deeper dive than we have pages to
cover.

That said, you will be most comfortable with the information we're
sharing if the following things are generally true about you:

» Youre familiar with the basic network devices - routers,
switches, and firewalls - and what they do.

» You have a general understanding of cloud infrastructure con-
cepts like virtual machines and cloud providers.

» You're aware of typical network security issues and threats, like
DDos attacks

We'll If you aren’t rock-solid on those topics, DO NOT PANIC
(also, don’t put this book back on the shelf. We're not done paying
off our kids’ orthodontist yet.). Throughout this guide we’ll offer
information, instruction, and examples. And if you need more, we'll
also provide links to background and deeper dives on these and
other topics as we cover them.

xii | Introduction

About This Book: What Will | Learn?

We know that a book of this nature is an investment of time and
attention. As such we wanted to suggest the return you may enjoy
for spending some of your precious time here. By the end of this
book the reader will gain a better understanding about:

Types of network telemetry
Including traffic data, device metrics, events, synthetic meas-
urements, routing information, configuration data, and busi-
ness/operational data.

Network telemetry sources
Including physical and virtual network equipment, servers, cli-
ents, cloud environments, and more.

The different planes
(Management, control, data) that serve as points of contact
where network telemetry can be gathered..

Ways to wrangle telemetry data
Such as collecting monitoring information from devices, rep-
licating data to analytics systems, feeding broader observabil-
ity systems, and understanding data system requirements and
trade-offs.

Ways to use network telemetry in situ
From guided exploration (e.g., starting from a network map and
zooming in), to unbounded exploration (e.g., drilling down on
specific aspects of network traffic), through using telemetry as
part of workflows, issue responses, and automation. Basically
how you navigate and display and use network telemetry within
the tool(s) you use to collect it.

Using network telemetry as part of your larger observability ecosystem
Network data extends, enhances, and informs the telemetry
you get from application and infrastructure monitoring. In this
section we show you how to integrate and correlate the infor-
mation so you have a better sense of what is happening from
the top to the very bottom of the application stack and the OSI
model.

But this guide isn’t just geared to increasing your awareness. Wed
also like to believe that we'll provide you with skills you can actively

Introduction | xiii

apply. Therefore, after reading this book we also hope the reader will
be able to:

o Justify (both to colleagues and decision makers) the business

case for implementing and using a network observability solu-
tion in the workplace.

Apply the knowledge about the different types of network tele-
metry, along with each type’s strengths and deficits, in order
to select the best mix of options when displaying data about a
particular network, application, issue, or architecture.

Design better monitoring and observability solutions by com-
bining data and telemetry from various tools (be honest, we
know you've got more than a couple) in ways that provide
clarity and uncover issues.

Build, adapt, and improve monitoring and observability outputs
- everything from dashboards and reports to alerts to automated
workflows - based on your (perhaps newfound) understanding
of how network telemetry works.

Lead the charge for better network observability by educating
team-mates, departments, and even business leaders.

NOT About This Book: What WON'T | Learn?

Well-organized technologists don't just focus on the list of things
they want to do, they also maintain healthy boundaries by keeping
in mind the things that are NOT part of the roadmap. Wed like to
show the same discipline and organizational rigor here by listing
some of the things this book is NOT going to teach you about. We
hope this will both set your mind at ease and also let you know
whether the book you’re holding has the answers youre looking for
or not.

This book isn’t going to teach you about things like:

« Basic networking. We won't explain in detail the OSI model,

networking protocols, or how to configure a routing protocol
on a layer 3 device (but will provide links to background on
routers)

o How to evaluate, select, install, configure, or use a specific

observability solution.

Xiv

| Introduction

« How to evaluate, select, install, configure, or use a specific type
of networking gear; or networking protocols; or standard net-
working architectures.

« How to evaluate, select, install, configure, or use a specific cloud
provider; or how to migrate a particular application to (or from,
or between) the cloud.

Introduction | xv

CHAPTER1

Network and Telemetry
Introduction

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the authors’ raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
gobrien@oreilly.com.

What IS Network Telemetry, Redux

We offered a high-level description earlier in the book, but now
it’s time to really dig in and offer a detailed explanation: network
telemetry refers to data ABOUT your network, rather than the
data that's moving AROUND your network. Network telemetry
includes everything from the relatively simple (and relatively unim-
portant) device information (think: what are the make, model, and
sub-components in the gear that make up my network); to the more
relevant (and important) performance and state information about

17

the devices themselves (e.g. metrics related to CPU, RAM, disk,
bandwidth, number of connections, and so on).

But where the concept of network telemetry really hits hard is when
it tells you detailed information about the network traffic itself.
Where are those packets coming from or going to - which might
include everything from IP addresses to URLs to countries? How
much of the data is one protocol vs. another? How many of the
intermediate hops from source to destination are remaining static,
and how many are changing? And those intermediate hops - are
they the most efficient hops, or is some of the traffic getting hung up
in sub-optimal routes?

Those questions are (or should be) deeply interesting to IT practi-
tioners because they speak to aspects of application performance
that can’t be sussed out using higher level tracing options found in
non-network-centric observability solutions.

This makes network telemetry important (and valuable) for several
reasons:

Security First

Saying “security first” is about 12 astronomical units (1.1 billion
miles, or over 70 trillion average-lengthed bananas) away from
actually doing something about security. Even saying “security is
everyone’s responsibility” is pointless (not to mention insulting)
because sure, it is, but how many of us have ever earned a
quarterly bonus because we “did good security”? Yeah, that’s
what I thought.

Nevertheless, if a technique allowed you to not only become
more aware of security issues, but identify their root causes and
even address them, you probably wouldn’t turn your nose up at
it, either.

Network telemetry allows you to do exactly that with specific
types of security issues. First and foremost there are DDoS and
botnet attacks. Not only does network telemetry tell you it’s
happening to (or on) your network, the right tools can show
you when those events are happening “near” your network -
meaning they’re happening to someone else who is also using
your ISP’s infrastructure, using same routes as your data is
traversing or hitting intermediate network gear your traffic is
also using.

18 | Chapter 1: Network and Telemetry Introduction

But it goes further than that. Because it can tell you both source
and destination, as well as the volume, protocol breakdown, and
applications involved, network telemetry can quickly identify
when data is being exfiltrated. Even if no data is involved, hav-
ing a network observability solution will allow you to put alerts
in place that tell you when unexpected or unwanted protocols,
ports, or destinations appear in the mix, or appear above a
certain baseline.

Understand your network top to bottom and end to end

Network telemetry gives you a view of your internal network
(LAN, whether in the cloud or on premises) but it also tells
you how your network traffic is performing once it exits the
edge router and hits the WAN. That means you can make
informed decisions about traffic and capacity management at
the edge of your network. It’s also the best way to understand
how your precious (and expensive) investment in everything
from your Internet provider(s) to your cloud architecture to
your SD-WAN is performing.

Used either as-is, or in combination with those higher-level
application observability tools I mentioned above, network tele-
metry provides a unique view of your infrastructure, allowing
you to pinpoint the area that’s actually having a problem (versus
just knowing that “the application is slow” or “we can’t get to the
database”), and thus speed resolution.

All of this allows you to confidently understand your current
use (including new and un-expected services and traffic pat-
terns), plan for future growth, and thus control costs.

Make your cloud environment less... foggy?
Smooth the transition of applications from on-premises to
cloud by allowing you to first baseline the current state in terms
of performance, load, traffic direction, etc. And then, once its
been transitioned to the cloud, you’ll understand when perfor-
mance differs, and where the breakdown is occurring, and why.

In essence, network telemetry empowers you to gain a deeper
understanding of your networK’s health, performance, and
usage patterns. This knowledge allows you to proactively man-
age your network, optimize its performance, and ensure a
smooth digital experience for users.

What IS Network Telemetry, Redux | 19

Anatomy of a Network

Let’s be honest - networks are composed of simple base components
but at scale anything but simple. Sure, most of the network diagrams
you see in class are 3 routers (inevitably named “Spring”, “Summer”,
and “Fall”), connected to a switch, which is connected to “the cloud”.

And vyet, in the real world, networks are composed of many
(MANY!) different device types in multiple configurations and use
cases.

_ | CsCore
MSS/VL Network

- .= L
RN { PS Core Network

(IP/MPLS)

Figure 1-1. Title placeholder

So we wanted to take a moment to identify and define the most
common devices and functions you might see, as these are going
to be the sources of network telemetry that we discuss later in the
book.

Broadly categorized, these include:

Routers, switches, and access points
Physical and virtual equipment responsible for moving your
traffic in your data centers and clouds; across your campuses
and wide-area networks; and over the internet and broadband
and mobile networks.

20 | Chapter 1: Network and Telemetry Introduction

Servers, clients, and IoT endpoints
Physical and virtual equipment that connects to your network,
such as servers, clients like PCs, laptops, and mobile devices,
and even internet-of-things (IoT) endpoints.

Cloud VPCs
Virtual private clouds in your public cloud infrastructure.
Includes subnets and the container environments where you
deploy your microservices-enabled applications.

Controllers, service meshes, load balancers, and firewalls
Physical and virtual devices that control, orchestrate, load bal-
ance, program network configuration, and filter inbound and
outbound network and application traffic based on policies and
threat intelligence across data centers, cloud, WANs, and the
internet.

Transport devices
Many modern transport devices (layers 1 and 2 in the OSI
Model' in fiber, broadband, and mobile networks now support
active and passive telemetry.

TAP/SPAN/NPB devices
Physical and virtual test access points (TAP), switch port ana-
lyzers (SPAN), and network packet brokers (NPB) that provide
port mirroring, testing, and monitoring.

But a few of those deserve a more detailed description. Once again,
the purpose of this guide is not to teach you every aspect of network
design, architecture, implementation or management. Instead, we
want to describe the devices below in terms of the telemetry they
emit and the insights that telemetry provides.

It’s also important to note at the outset that each of these devices
has their own hardware metrics that shed light on the network -
everything from

o up/down status of individual components

+ to CPU and RAM to fan, temperature, and power supply data

1 For those who need a reminder, the layers are: Physical, Data Link Layer, Network,
Transport, Session, Presentation, Application. A popular mnemonic for this is: “Please
Do Not Throw Sausage Pizza Away”. For those who need more than a reminder, there’s
always wikipedia (LINK TO: https://en.wikipedia.org/wiki/OSI_model)

Anatomy of a Network | 21

https://en.wikipedia.org/wiki/OSI_model

o to disk activity and configuration changes

To a greater or lesser extent, combining that insight with the other
details can tell you where problems are occurring or, conversely,
when a problem is actually downstream of a device which seems to
be complaining but is in actuality simply unable to communicate
with the next hop in the chain.

The final caveat before diving into the specifics of each device type is
that even something as seemingly innocuous as inventory (especially
when visualized as a map) can have a profound impact on your
ability to understand how a network is performing and where the
root cause of a problem may lie.

Network Routing/Switching Primitives

There are four foundational primitives of networking that most net-
working elements use in various combinations for IP networking:

Link-Layer Forwarding (usually Ethernet)

Most of this guide will focus on IP networking - watching
IPv4 and IPv6 traffic. But underneath the IP layer there are
link layers that think in “frames” - not “packets”. Those frames
are usually forwarded by learning dynamically what addresses
(called MAC addresses for Ethernet) are at various places. There
used to be more link-layer protocols for wired networking, but
Ethernet has dominated for decades, perhaps with a smattering
of Infiniband for supercomping and AI data centers.

IP Forwarding (also called “routing”)
Taking packets from one interface (physical or logical) to
another. Routing tables are populated that describe how packets
get from one place to another. Usually it's done mostly by look-
ing at the destination IP address of the packet, but it can get
more complex and look at the source IP address or other parts
of the packet.

Access Control Lists / Firewall Rules
Another core routing primitive allows filtering and rate-limiting
traffic according to specified policies. These policies are often
called Access Control Lists, or ACLs, in routers and switches;
Firewall Rules in security elements; and sometimes just “policy”
in more cloud-y networking layers.

22 | Chapter 1: Network and Telemetry Introduction

Tunnels / VPNs
Originally used for more “exotic” configurations, tunnels are
now commonplace and are protocol-based wormholes that con-
nect different parts of a network together. Common tunneling
protocols include GRE, IP (in) IP, and Wireguard. When these
are exposed to users often they’re just called VPNs, but people
raised in networking often think of them as tunnels.

Network Device “Layers”

(Caveate: were being really broad in our use of the word “device”. We
could say ‘element” but that’s even more vague and prone to overlap
with other technical elements... see what we mean? In any case, for
our purposes the word “device” might mean a physical or virtual object
which receives, processes, and/or emits data.)

Network devices forward packets or frames but how do you config-
ure those devices, and how do the rules get loaded and the forward-
ing executed?

In the old world packets ran through the CPU but at current scales
there just aren’t general-purpose computers fast enough for that for
many core network devices, so accelerated forwarding hardware is
used.

Vendors and practitioners generally talk about multiple “planes”
we interact with in network devices. With regard to monitoring
and observability, a plane is really an abstract concept that broadly
refers to a distinct layer of the network architecture where a specific
process takes place.

Most commonly (in networking) you’'ll read about the management
plane, the control plane and the data plane.

The management plane is concerned with device-specific informa-
tion and tasks, such as the configuration of the device and its sub-
components. This is also the part of the architecture responsible
for updates to firmware and operating system, security features, and
(most importantly to us), monitoring.

The control plane is the part of the architecture responsible for how
data (packets) are moved from one place to another - forwarding,
refusing access, etc. Thus, the act of building a routing table is part
of the control pane’s functionality.

Anatomy of aNetwork | 23

The data plane is the area of the network architecture that actually
does the forwarding. Thus, the data plane takes a packet and sends
it out a specific interface, based on the routing map assembled by
the control plane. Its also the data plane that performs tasks like
modifying a packet with additional header information, or applying
a Quality of Service (QoS) rule.

Each of these planes has different kinds of telemetry we can con-
sume or pull.

For example, CPU utilization from the management plane; table uti-
lization from the control plane; and traffic speeds, summaries, and
even detailed records of traffic sent/received from the data plane.

We'll map these in more detail in this module.

Control Plane Management Plane

manages network manages the network’s
routing protocols operations

SNMP, SSH, and Telnet
protocols

OSPF, BGP, and MPLS
protocols

Data Plane

forwards data packets between devices in the network
k Ethemet, TCP/IP, and UDP

Figure 1-2. Title placeholder

24 | Chapter 1: Network and Telemetry Introduction

Device Types

Routers
Routers are hardware that generally run a Unix-based OS
that interacts with users and other networking elements, and
instructs specialized hardware (if present) how to forward, filter,
and report on the packets going through.

Routers have interfaces - physical or logical - and the physical
interfaces usually have optics or wired ports that can be moni-
tored.

Many modern routers can do switch-like Layer 2 forwarding
themselves, but generally, (unlike a switch), a router segregates
Layer 2 forwarding unless told to do otherwise via configura-
tion.

Layer 2 Switches
Layer 2 switches move (typically) Ethernet frames around, but
also have OSes, CLI, protocols, tables, and telemetry they gener-
ate.

Layer 3 switches
Most switches today are very close to being routers, and do IP
forwarding as well at line rate.

Virtual Private Clouds
In cloud computing and cloud networking, Virtual Private
Clouds, or VPCs, are primitives that behave like router inter-
faces.

Web Logs
Web servers can emit log lines per transaction that describe
various actions and transactions, both success and failure. These
logs can shed a great deal of light on the network since they
show source and destination IP addresses, application context,
and performance information about both application and TCP-
layer performance.

Load balancers
With regard to the devices we're exploring in this section, load
balancers may be the most fundamentally different as well as
functionally narrow-focused. They’re really Layer 4+ routers in
some sense, and the metrics and telemetry you should look for

Anatomy of aNetwork | 25

from them bears at least a passing resemblance to that of routers
and switches.

Unlike routers, since they are part of the Layer 4+ transactions,
they actually see and can report on response time, latency,
throughput, error information, and even the traffic patterns of
the data being handled. They can be great observation points
but are often left out of network telemetry sources by teams.

Service Meshes

Broadly speaking, service meshes are load balancers designed to
talk to other backend software elements, not browsers/users.
They can do health checks, load balancing, content rewriting,
policy enforcement, and telemetry just like load balancers, and
are almost always delivered as a software layer or service, unlike
load balancers which are sometimes still physical appliances.

Firewalls

When discussing routers, we mentioned that there are security
controls that might be involved. Firewalls take that behavior and
make it their entire raison detre. At the same time, there are still
routing elements involved.

Hosts, Containers, and Kubernetes

No, these are not (usually, but see below) network devices. Yes,
they still matter - even in the context of “network observability”

First and foremost, hosts, containers, etc are usually the ulti-
mate and final end-points between which all network traf-
fic flows. But second, they often have networking elements
- real, honest-to-goodness, route-and-switch-type-data - con-
tained within them, and thus they are (yet another) amazing
and often-overlooked source of insight and telemetry.syslog

Other host types - from servers to containers and beyond may
also be (openly or secretly) acting as routers. All it takes is two
network adapters (physical or virtual) connected to two separate
network subnets, and - voila! - network routing is happening.

In a modern way hosts get combined to run workloads, Kuber-
netes (K8s) is a hot topic!

K8s has namespaces that are just collections of containers that
perform various tasks - some in service of the K8s orchestra-

26

Chapter 1: Network and Telemetry Introduction

tion functions itself, and more (most) related to the application
which forms the raison detre for the K8s pod in the first place.

But inevitably, the K8s namespace will include a system running
system primitives like forwarding tables and traffic filters, and
most interestingly nowadays, Container Native Interfaces, or
CNIs, that are the “routing” controller for the underlying sys-
tems.

Getting network telemetry on hosts can be done broadly the
“traditional” way - running an SNMP daemon to expose inter-
face, CPU, and other metrics, as well as exporting traffic sum-
maries via a flow-exporting daemon.

There is also a newer way of observing traffic and metrics on
hosts via eBPF, which was developed as a modern kernel instru-
mentation infrastructure that can observe and control what
the Linux kernel is doing. Generally, eBPF agents that look at
the network are TCP and application-decode focused and can
provide enriched flow-like summaries with performance and
application context - but are often architected to ignore lower
layers, so may miss errors or attacks at lower protocol layers.

Tap/SPAN/Network Packet Brokers (NPB) devices

When network devices themselves can’t process or emit traf-
fic (flow-like) telemetry of their own, one solution is to use
network taps (optical splitters), SPAN (Switch Port Analyzer)
functionality on switches, or Network Packet Brokers that are
“super SPAN” devices with more complex filtering and policy.
Many of these devices just copy packets to the things that will
generate telemetry, but some of them can generate flow summa-
ries themselves.

Common Telemetry Types: The Four Pillars

If you've been anywhere near a conversation on social media about
“observability”, you will inevitably hear someone mention the three
four pillars of observability (really, telemetry). These have been the
subject of great debate, passionate argument, internecine flame wars,
and (most of all) confusion.

At the heart, the goal was (and still is) an attempt to both list and
then group the essential techniques that make up observability, such

Common Telemetry Types: The Four Pillars | 27

that customers could have a single reference by which they could
evaluate the vendors and their products in this space.

Of course, it could be argued that the reason for some of the disa-
greements boils down to vendors not accepting a definition which
would put their own products into a less-than-glowing category.

Arguments aside, the pillars seem to have settled themselves into
some mix of “M.E.L.T:

Metrics
Individual (usually numerical) data points which can be gath-
ered, graphed, averaged, etc to show a trend.

Events
Strings of text and numbers stamped with a time and a source
to show that such-and-such occurred to so-and-so system and
thus-and-this time.

Logs
Sources of messages and other output which might be aggrega-
ted across many systems and comprise multiple layers of the
architecture, from low-level hardware to high level application.

Traces
A coherent collection of information that show how a “transac-
tion” within an application traverses multiple systems, and the
ways the transaction is performed at every step along that path
- usually augmented with a transaction or trade ID to allow
correlation of all of the steps in that transaction.

These categorizations are, by and large, fine. However they are (and
always have been) biased toward application telemetry. And that’s
fine, but it doesn’t work completely when discussing network tele-
metry.

Therefore, Avi and I are presenting a different framework for under-
standing the different types of data that you'll commonly encounter
when monitoring a network infrastructure.

Types of NETWORK Telemetry

Admittedly, monitoring and observability data comprise a really
long list of a wide range of data types. A quick glance at the next sec-
tion will show that more than a few aren’t even relevant to network

28 | Chapter 1: Network and Telemetry Introduction

devices (looking at you, PerfMon counters). So let’s take a moment
to describe the essential telemetry types that will make up the bulk
of our focus in this book:

Traffic
This describes any data element (metric, trace, etc) that shows
how your traffic is flowing across networks. Sample formats
include NetFlow, sFlow, IPFIX, VPC flow logs, traffic data in
JSON, and packet data via PCAP and eBPF for connections,
process, and container context in cloud-native environments.

Device metrics
These tell you the state or health of your physical and logical
network equipment. Sample formats include SNMP, syslog, and
streaming telemetry.

Events
This indicates events like an attempted login, a threshold has
been met, or a configuration has been changed. Sample formats
include SNMP trap and syslog.

Tables
Snapshots/state of the various tables in a router, mostly for
forwarding/routing.

Synthetic
These “synthetic” measurements reveal performance metrics
such as latency, packet loss, and jitter, and can be triggered
or collected via device telemetry interfaces. They span client
and server endpoints, network equipment, and internet-wide
locations at both the network and application layers.

Configuration
This (typically static) data represents the operating intent for all
configurable network elements such as topology information,
IP addresses, access control lists, location data, and even device
details such as hardware and software versions. Sample formats
include XML, YAML, and JSON files.

Business or operational
Often called “layer 8, this data provides business, application,
and operational context about what the network is being used,
and can be added to telemetry to help network pros measure

Types of NETWORK Telemetry | 29

impact, understand value of certain traffic, and prioritize their
work.

DNS
DNS telemetry helps put other network data into context by
indicating from or to where traffic is coming or going. Most
DNS information comes in text-based files.

Drill-Down: Telemetry Types

The previous list of types of telemetry is concise and focused rather
than comprehensive. But now that we understand the definition and
the value of network telemetry, as well as the devices that make up
a typical network, we need to take a moment to list out all of the
various data types available for monitoring and observability.

This section will go into both the protocols themselves and, in some
cases, touch on the Device Health and Status: Syslog.

Syslog is a protocol which allows one machine to send a message
(“log”) to a server listening on TCP or UDP port 514. This is more
often used and at higher volume when monitoring network and
*nix (Unix, Linux) devices, but network and security devices such
as firewalls and IDS/IPS systems send system and component logs -
and can be configured to send even more detailed logs, though care
is needed not to overwhelm the CPU (control plane).

Syslog messages are similar to SNMP traps, but differ in that syslog
messages are relatively freeform and don't depend on the MIB-OID
structure required by SNMP.

In addition to being more freeform, syslog tends to be “chattier”
than SNMP traps. However, it’s more flexible because many applica-
tions can be set up to send syslog messages, whereas SNMP traps
are generally used much more sparingly, and most companies have
much more broad and robust log collection ability and scale than
they do for SNMP traps.

Traffic: Flow Monitoring (sFlow, NetFlow, VPC Flow Logs, eBPF, and others)

Standard device metrics can tell you the WAN interface on your
router is passing 1.4Mbps of traffic. But whos using the traffic?
What kind of data is being passed? Is it all HT'TP, SSH, or something
else?

30 | Chapter 1: Network and Telemetry Introduction

You probably recognize the term “NetFlow” It’s been around for
a while. But what were referring to is really the broader category
of traffic data, or “flow”, in general. Examples of these protocols
that report on network traffic details include NetFlow, sFlow, JFlow,
IPFIX, and VPC Flow Logs, among others. Despite the differences
in strengths or weaknesses, implementation specifics, and more,
they all have similar aims.

Flow monitoring answers those questions. It exports in terms of
“conversations”—loosely defined as one period of data transfer
between two computers using the same protocol. If DesktopCom-
puter_123 is sending a file to Server_ABC via FTP, you may see a
snippet or snippets of it via flow monitoring. Flow monitoring usu-
ally at least includes protocol, source and destination IP addresses
and ports, and the number of bytes and packets observed. Note that
if the flow records are sampled, the bytes and packets need to be
multiplied back by the sample rate to form the approximate total
traffic actually observed...

While people usually refer to both sFlow and the more connection-
oriented NetFlow/IPFIX/VPC Flow Log protocols as flow monitor-
ing, and once parsed, the data their records contain look pretty
similar, the way they observe and report on traffic actually is quite
different. sFlow exports headers from a sample of packets and is
much easier to implement and takes less resources. It is also usually
much more real-time. The traditional connection-oriented proto-
cols need to build software or hardware tables of the connections
(called flows), accumulate data like bytes and packets seen, and
every so often pick records to export, usually according to a flow
expiry timer.

eBPF-observed traffic can be a bit of a mix of those, and is done
on hosts that run native processes, containers, and VMs. Most
eBPF traffic exporters are concerned primarily with TCP and UDP
connections that terminate on the kernel of the server they are
running on. This enables adding a lot of context not possible from
outside the compute layer - for example, process ID, command line
arguments, process memory usage, sometimes application decodes,
and if containerized, pod and namespace. On the other hand the
traditional approaches often don’t watch all the packets and can miss
ICMP, non-IP protocols, bad layer 2 framing, and especially, traffic
in hosted VMs.

Types of NETWORK Telemetry | 31

While some flow sources only support un-sampled export (typically,
firewalls and many VPC Flow Log sources), generally flow protocols
and their software and hardware implementations will require sam-
pling. And even if they don’t, you may want to enable sampling to
reduce the amount of compute and storage you need to receive,
process, store, and query the traffic data.

Flow data is often captured by a network device located somewhere
in the middle of the conversation—usually one or more routers
near a local edge or core of the network (or one router at each
remote location if there are site-to-site communications which don’t
go through the core). In prior decades, many routers that looked
like they supported flow export protocols actually had real problems
with platform stability and/or flow accuracy, but most platforms
now support it fairly well.

Note the two machines in the conversation (DesktopComputer_123
and Server_ABC, in my example) do NOT need to be monitored.
Just the network devices that they are either attached to, or that
might see their conversations..

Trafficand Policy: Packet Monitoring

For higher granularity monitoring than flow allows, packet moni-
toring is sometimes used, though much less than years ago. This
is generally enabled with optical taps that split a fraction of light
off to be observed; by asking switches or routers to copy packets
(called now generically SPAN, or Switch Port Analyzer); or by using
specialized switching devices called packet brokers to do this.

The packet copies generally go to servers that can generate flow,
store the raw packets, and/or perform DPI (Deep Packet Inspection)
to go even deeper than most flow protocols allow.

While instrumenting modern infrastructure with full packet mon-
itoring can be incredibly expensive and is not usual in most
greenfield builds, packet analysis can generate flow-like data with
application decoding and performance data simply not available in
most flow-based traffic monitoring implementations, and storing
all of the packets allows for more detailed security inspection and
investigation.

32 | Chapter 1: Network and Telemetry Introduction

A Device-to-Telemetry Rosetta Stone

Having gone over the types of devices you might meet in your
travels through the network; and the types of telemetry you might
encounter in your observability solution, I thought wed take a
moment to identify which types of telemetry you will be able to
coax out of various device types.

Table 1-1. Title placeholder

Device type Telemetry Summary

Routers Just as important is the information about the traffic itself - in this we’re grouping
the volume, errors, discards, packet counts, packet errors; as well as the sources,
destinations, URLS, ports, and protocols involved.

Along with the essential service of routing traffic, routers might also do a fair bit of
security functions, especially if ACLs or other permission-based handling is involved.
And all of those functions are going to carry with them their own sets of metrics,
logs, and other telemetry which further informs your picture of the infrastructure.

Layer 2 Just like routers, switches provide a full complement of metrics under the broad

Switches umbrella called “bandwidth” - sources and destinations (this time in the form of
MAC addresses rather than IPs or ports - along with bandwidth volume, errors,
discards, packet counts, and packet errors.

Layer 3 From a network telemetry point of view, these devices combine everything you

Switches might find in a router and an L2 switch. Thus, the very thing that makes them more
powerful in terms of network architecture, is what makes them more complex with
regard to monitoring and observability.

Virtual Private VPC flow logs are equivalent to the flow records (e.g., NetFlow, sFlow, etc.) in a

Clouds traditional (on premises) network. Various cloud network components such as a
VPG, a subnet, a network interface, internet gateway, or a transit gateway, can
generate flow logs which are used in the same way as NetFlow data. These started
with the core cloud network functionality (VPC, NSG, VNET) but have versions now
available for many other cloud services like storage, firewalls, and other layers of

the stack.
Load On the other hand, there are some very specific data types, like connections (active,
Balancers passive, etc), request count, information on healthy/unhealthy hosts, and even the

health and performance of the load balancer infrastructure itself.

If the load balancer is in a cloud environment, you might also be interested in
request tracing, changes to the load balancer itself (due to elastic compute), and
connectivity to other cloud-based elements like storage, content engines, and
more.

It's also important to note that “load balancer” is a general term for a device which
might be specifically designed for application, network, or even gateways (virtual
devices like firewalls, or intrusion detection systems) traffic.

Service Like load balancers, service meshes see a rich set of data that can be incredibly
Meshes useful to establish Mean Time to Innocence (MTI) and to debug full-stack issues (“is
it the network?”).

Types of NETWORK Telemetry | 33

Device type Telemetry Summary

Web Logs Nowadays most web/application servers are behind load balancers or service
meshes and those tend to be the observation points.
But classically and still sometimes, getting a stream of web transaction logs can
be a great way to see performance / latency of requests, whether they succeeded
or failed, the source information of the browser that made the request (even if
the packet was subsequently bounced off a VPN or other obfuscating device), and
cookies and other data harvested by the web application itself.
All of that, along with the telemetry from load balancers and routing information,
can paint an incredibly clear picture of the “intent” and performance of the traffic
on your network.

Firewalls For the intrepid network telemetry spelunker, that means being prepared
to gather all of the bandwidth information (volume, errors, etc) along with
information about the device connections themselves - data about blocked
connections, intrusion attempts, traffic patterns that have been pre-determined
to be “suspicious”, and network requests that violate built-in security policies.
All of those will have a wide range of specific metrics and logs associated that shed
light on who tried to do what, when, and to whom.

Hosts, In K8s-land (and let’s be honest, there aren’t many other serious contenders at
Containers, the time of this writing), intra-container and inter-container network telemetry can
and be just as important to your understanding of performance, availability, fault, and

Kubernettes reliability as traditional LAN and WAN insights. It can get a bit complicated because
of tunnels and NAT, and from an observability perspective, using IPv6 un-routed
space to disambiguate workloads and their IP addresses can be very helpful as a

NAT alternative.
Tap/SPAN/ In the early days of network devices, many couldn’t generate their own traffic
Network telemetry well or stably, but while today most can, they don't do much to observe
Packet traffic performance, and often really need to sample to keep up even now.
Brokers (NPB) Taps and NPBs can make it possible to send line-rate un-sampled traffic records,
devices and/or send copies of the frames/packets to appliances that can do deeper
inspection of traffic performance and contents than routers and switches are
capable of doing.

Collecting data, network style

....and (broadly speaking) how to get that data out of your devices.

In the next module, we're going to show you how to “wrangle” your
data - meaning take it from its initial form and make it usable in
various observability tools. But before getting to that, we thought it
would be helpful to offer an overview of how to get the data itself.

To be clear, this section will not offer comprehensive device- or
vendor-specific instructions. It will mostly focus on how, generally
speaking, to get the various telemetry types (SNMP, streaming tele-
metry, etc) out of devices, with a few illustrative vendor-specific
examples. So more of “how to do an SNMP get” than “how to

34 | Chapter 1: Network and Telemetry Introduction

configure SNMP on a Cisco IOS switch versus doing it on a Juniper
router.”

Telemetry Deep Dive: SNMP and Streaming Telemetry

SNMP has been around for decades, and therefore folks interested
in learning more about it will find a wealth of information, history,
and tutorials at their disposal. For that reason, we're going to keep
this section relatively brief, and trust the reader to find the specific
instructions they might need..

SNMP can be broadly divided into two types of information, based
on the delivery method - push-based or pull-based.

SNMP Traps

This is the pull-based option. They are triggered on the device being
monitored, and sent to another device that is listening for those
messages (a trap receiver or trap destination). Nothing is needed
on the part of the monitoring solution except to receive and store
those messages, and then correlate them with telemetry from other
sources.

All the configuration for this is done on the device itself, meaning
that every device on your network that needs to send traps has
to be configured with the trap destination, along with the security
elements (community string or username/password). We'll explain
more about those options below.

SNMP Get

As hinted at earlier, SNMP Get requests are pull-based. A remote
system sends a request to the machine being monitored, requesting
one or more pieces of data. The most basic form of this command is:

snmpget -v <SNMP version> -c <community string> <machine IP or
name> <SNMP object>

What that looks like in practice:

~$ snmpget -v 2c -c public 192.168.1.10 1.3.6.1.2.1.1.5.0
1s0.3.6.1.2.1.1.5.0 = STRING: "BRW9C305B289C1"
Rather than get into the weeds of the various methods of SNMP-Get
(which will largely be handled under the hood by whatever monitor-
ing and observability tool you use), the point is that SNMP works to

Collecting data, network style | 35

bring data about a remote system (whether numeric or text) into a
local repository for storage, tracking, and visualization

A Note about SNMP versions

Each version of SNMP brought enhancements aimed at addressing
the needs and challenges of network management at the time.

SNMP version 1 (SNMPv1) uses community strings, which act as a
rudimentary form of authentication.

SNMP version 2c enhances the performance aspects of SNMPv1,
including GetBulk requests.

SNMP version 3 strongly emphasizes security and privacy with the
inclusion of authentication, privacy (encryption), and access con-
trol. The drawback is that configuration of SNMP v3 is somewhat
more complex both for each device to be monitored and for the
monitoring solution that collects the data.

Consistency is the Key

Or it would be, if SNMP had more of it. It’s not just that a particular
data point (temperature, or CPU, or bandwidth) is inconsistently
presented from one vendor to another.

It might not even be such a glaring issue if the difference existed
between two different types of devices (routers and load balancers,
for example).

Or between two models of the same device type from the same
vendor.

But the fact that there are differences in the way the same data point
is presented between two sub-elements (like interfaces) on the same
device is simply egregious.

We aren’t sharing this to downplay SNMP’s continued importance in
the landscape of network telemetry options, but rather to alert you
that some mapping of different SNMP variables might be needed to
get a unified idea of, for example, “interface traffic”, even on devices
from the same vendor.

36 | Chapter 1: Network and Telemetry Introduction

Streaming Telemetry

As described in the “Types of Telemetry” section, streaming Teleme-
try (ST) is notable for having many of the same data points as
SNMP, and more; and a far more consistent data structure; and a
significantly higher granularity with a significantly lower impact on
the device being monitored.

Originally developed as an alternative to SNMP, the goal was to
move away from poll-based observation (and each monitoring sys-
tem separately polling devices), and towards pushing defined data
from network devices, to then be consumed by all of those systems.

So what’s not to love? Well, getting it set up can be a bit of a
challenge. This mostly arises from the newness of the technology
and the lack of experience on the part of both engineers developing
observability solutions; and network professionals who are imple-
menting ST in their environments.

Oh, and the fact that it’s not supported on a wide range of devices
yet. That’s another critical factor.

Telemetry Deep Dive: NetFlow, sFlow, and Other Traffic
Sources

NetFlow (and its variations like sFlow, JFlow, IPFIX, and others,
which we'll refer to from hereon out collectively as “NetFlow” unless
were discussing something particular about the other variations)
was practically purpose-built with the goals of network telemetry
and network observability in mind. While NetFlow isn't the only
protocol a network engineer may need, it is almost certainly the
primary one they will refer to for the richest level of insight.

NetFlow is push-based, meaning the device observing and generat-
ing the telemetry (kind of. More on that in a minute) sends data to a
listening device.

As you can see, the single machine is able to report on conversations
between devices on the internal network, the internet, and many
points along the way such as peer routers.

Telemetry Deep Dive: API

Talking about APIs in the context of network telemetry is a slightly
different discussion than the one you might have when describing

Collecting data, network style | 37

APIs for programming, automation, or retrieving cute cat pictures.
Or Chuck Norris jokes. Or things that are slightly more useful like
the time for sunrise/sunset.

An older way to gather metrics is still also sometimes required - CLI
scraping via libraries that log into the device command line, issue
commands, and retrieve and parse responses.

But why bother with APIs or CLI scraping?

APIs are attractive because they allow the process of telemetry col-
lection to move into a slightly more modern paradigm, both for
individuals and for monitoring solution engineers.

But both API and CLI scraping also allow access to some network
device telemetry that is unavailable via SNMP or ST (Streaming
Telemetry).

For example, many devices don’t expose all the operating parameters
of physical optics (temperatures and light levels) via SNMP and ST.

This adds yet another dimension to the unification required to
consume all of these metrics, and as in our discussion of ST, is left as
an exercise to the observability tools team and/or vendors.

Telemetry Deep Dive: Synthetic Transactions

If there is one drawback to all of the methods we've discussed so far,
it’s that it requires the active presence (and participation) of those
pesky network elements called “users” Meaning: without people
actively using an application, system, database, etc there’s no (or at
least significantly less) data moving through the network, and there-
fore fewer data points to collect, and therefore fewer opportunities
to identify issues.

Also, most sources of network metrics and traffic telemetry don't
have any concept of user or traffic performance (latency, loss, jitter,
and throughput). So how best to see how well things are perform-
ing?

And this is where synthetic transactions come into play. As the
name suggests, these are actions which generate traffic by means
other than authentic user behavior.

Just for context, and maybe as the simplest example of this
type of monitoring, both “ping” and “traceroute” could be catego-

38 | Chapter 1: Network and Telemetry Introduction

https://cataas.com/cat
https://api.chucknorris.io/jokes/random
https://api.sunrisesunset.io/json?lat=38.907192&lng=-77.036873
https://api.sunrisesunset.io/json?lat=38.907192&lng=-77.036873

rized as synthetic transactions. However, synthetic transactions are,
more broadly speaking, pre-set (you might think of them as “pre-
recorded”) actions which run at regular intervals. At its most simple,
you can think of them as a macro running on your laptop every x
minutes. But in reality the technique (and its benefits) go so much
further than that.

First, the action can run from multiple locations, but report the
results into a single repository. This provides insight as to whether
an issue is happening with the target application or system (i.e. the
problem is consistent from all locations at the same time) or if the
app/system is fine, but certain routes to it are impacted.

Moreover, synthetic transactions can be multi-step. Rather than just
checking if a web page “is up” (returns a 200 code), a single transac-
tion can:

Go to a website

“Click” on the login page

Log in with pre-set credentials to a dummy account

“Click” on the account balance page

Verify that the balance is $2.75

ok e

Not only will you be able to determine whether the app/system/site
is up or down, you will also gain insight as to the timing of the
overall transaction and each of the steps along the way.

The range of applications, systems, and conditions that can be
checked via synthetic transactions include network status and per-
formance tests - from the simple checks (ping and traceroute); to
more complex for things like BGP, ASNs, and CDNs; Internet pro-
tocol tests for DNS and http responsiveness; Web-centric tests for
things like page load time or API responsiveness; and multi-step
tests like the one described above.

Configuration management

Configurations sit at the border between monitoring and manage-
ment. On the one hand, a configuration identifies how a thing (a
system, application, or operation) works on a fundamental level.
On the other hand, knowing that a configuration has changed -
and especially when it’s changed - can often make the difference

Collecting data, network style | 39

between having no idea why a system is suddenly having an issue;
and knowing when the problem REALLY started and where to look.

At a high level, configuration management as it relates to monitor-
ing and observability is the process of first identifying which files
or elements count as “configuration’, doing an initial scan of that
object, and then repeating the process and noting changes.

Generally this is not done by watching files on a filesystem for the
“big vendor” routers and switches, though it may be on your Linux
or BSD-based services.

So in that case, the monitoring system would have to either use an
API (hopefully!) or log into the system using a terminal protocol
like ssh (because friends don't let friends use telnet), running some
variation of the “show config” command, capturing (“scraping”)
the results, and saving that information to the monitoring system
(whether as a file or a database entry). That process would be
repeated, and the two results scanned for differences. But that’s not
all. Those same configurations can be scanned for everything from
syntax errors to security errors.

If issues are found, it could trigger an alert; or it might show up
on a periodic report with the new, changed, deleted, or problematic
elements highlighted.

To summarize: Configurations may seem at first glance to be outside
the scope of what a monitoring and observability tool might care
about. It certainly doesn’t seem to fit the description of what “net-
work telemetry” includes.

But in truth configurations are so tightly bound up in system, appli-
cation, and sub-component stability and performance that NOT
monitoring this critical aspect of the environment seems foolhardy
at the very least, and possibly negligent when you consider the
worst-case (which are sadly becoming more common in these days
of companies joining the security-breach-of-the-week club) scenar-
ios.

40 | Chapter1: Network and Telemetry Introduction

CHAPTER 2
Wrangling Telemetry

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the authors’ raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
gobrien@oreilly.com.

Once you've identified the types of devices that make up your net-
work and the types of data they emit; once you've inventoried your
environment so you know how many of each type of device you
have; and once you've instrumented (a fancy way of saying “set up
a tool or tools that can collect telemetry”) - once all that’s happened
and the data is streaming in...Now what?

If we were a vendor of a monitoring and observability solution
(spoiler: we are, but let’s all pretend were not for a second), this
would be the place wed show you all the fancy dashboards, sophisti-
cated alerts, and stunning reports you would get if you bought our
complete line of products. But it’s not really that simple.

M

https://kentik.com

Yes, it’s true that vendor solutions do a lot of heavy lifting behind
the scenes. But this book is about exposing and elaborating on what
that behind-the-scenes activity is. Part of the reason is so you can be
a more informed customer. Knowing what happens inside the black
box of observability solutions, HOW you get from “data comes in
the left side” to “pretty charts come out the right side” allows you
to make educated decisions about everything from OpenTelemetry
methodology to aggregation options to pipeline management.

Once the data is extracted and obtained, there’s a whole set of
decisions about how it will get normalized, tagged for identification,
enriched with additional attributes, routed to (one or more) con-
suming systems, and finally analyzed and visualized. To put it into
a sound bite: this section describes the way you transform data into
information that drives action.

The other reason for laying things bare is so that you can make
an educated choice about the build-vs-buy decision that many mon-
itoring engineers' either have to make, or have to defend against
from leadership. Saying “I don’t have time for that” is a weak
argument without business-based justifications. But being able to
elaborate on the tasks involved and the level of effort to execute
those tasks puts that same response - “I don’t have time for that” - in
an entirely different context.

To be honest, as Avi and I were sketching the outline for this chap-
ter, we quickly realized that we could do an entire book just on this
one subject. Whether we approached things from the functional side
(“Who cares about theory, this is how streaming telemetry is aggre-
gated today”) to the academic side (“If you dont extract metrics
that are accurate out to with five decimal places, why even bother?”)
there would be hundreds of pages of analysis, methodology, and
opinions (not to mention DRAMA!) to explore.

We might do that someday (Let us know if thats a book youd
like to read!). But, our goal here is to get you thinking about the
high-level aspects of “wrangling” your data. That means considering
the following questions:

o What is producing my data?

1 Yes, that IS a job title, and this is a hill ’'m willing to die on. - Leon

42 | Chapter2: Wrangling Telemetry

o What data is being produced?
o Where do I want that data to end up?

o What do I need to do to the various data sets before I send them
on?

« How will I get the data where I want it to go?

o How will I use that data once (and after) it arrives?

And that is actually the perfect intro to the meat of this chapter. The
questions above are a pretty good summary of the sections youre
about to read. So let’s dive in.

Transport

At this point in the process, we can assume you have (or are
prepared to get) your inventory of devices, as well as the type(s)
of telemetry they produce, and which you want. This section is
devoted to exploring the ways you will get that data from its initial
collection point to wherever it needs to land - along with some of
the intermediate stops along the way.

Inventory of Telemetry Producers and Consumers

I know we just said that youd already done an inventory, but
it's worth taking a second to clarify what that inventory needs to
include. First, you need to know what systems you have, what tele-
metry they are capable of producing, what telemetry you want/need,
and how you are collecting that telemetry - both on an individual,
system-by-system basis, and also in terms of whether all that data
from multiple sources will get aggregated together before being sent.
Some of that (especially the aggregation part) will be covered in
more depth further along in this chapter.

Once you have that information, you need to create an inventory
for “the other side” - where it’s going to go. While vendors will be
quick to tell you “send all your data to us,” that’s neither realistic
nor cost-effective. In most cases, you don't need each observability
tool vendor you use (and trust me, youre using multiple tools even
if you aren'’t personally aware of that fact) to have a complete copy
of your data. So your task at this point is to take all those telemetry
types and map out where you want them to end up.

Transport | 43

If you are feeling resistant to the idea, Avi and I suggest you take
a minute and get comfortable with this idea. There simply is no
singular “best” monitoring tool out there any more than there’s one
singular “best” programming language, or car model, or pizza style.
There isn’t a single tool that will cover 100% of your needs in every
single use case.

Title: Leon’s Singular Sensations

Ahem: Perl, 1967 Ford Mustang 390 GT/A, deep dish
from Tel Aviv Kosher Pizza in Chicago

And so our point stands: your network telemetry is going to
be consumed by multiple systems: some of which will be super
network-specific, while other systems will display network telemetry
alongside other layers of the application and/or observability stack.

You need to have (which means both “create” and also “maintain in
perpetuity”) an inventory of those destinations and use cases.

The good news is that you have a range of options for getting your
information to those systems. The bad news is that you have a range
of options as to... OK, you get the joke. Your options (detailed
below) include:

+ Sending directly to each system

» Using a single replicator to send the same data to multiple
analytics systems

o Using separate replicators to send the same data to multiple
analytics systems

« Using a telemetry bus

o Observing the telemetry flow

Sending direct to each system

This is, to some extent, the default option. It is also, to some extent,
the worst of the options we present because it implies that (at least
for some architectures) every system is sending all of their unfil-
tered, un-normalized data to a repository (either on-premises or
across the internet) where it has to be collated, correlated, mashed,

44 | Chapter 2: Wrangling Telemetry

spindled, and mutilated before it is made presentable in whatever
form(s) you need it.

OK, I'm probably exaggerating a little, but ONLY a little. In smaller
systems, this design can not only work, but it actually has advan-
tages. First, it's straightforward. It's very clear how you need to
prepare every system you want to monitor, and whats going to
happen to your data once you set things up. By the nature of the way
it works, it is extremely specific in terms of data collected and the
devices that are monitored. And it obviously works exactly the way
the vendor needs.

But you have to balance that with the fact that you might find
yourself managing “1000 points of light data” in the sense that every
agent is another opportunity for failure or conflict. I have been
at companies that used these types of tools, where a team of 14
people spent their entire day just managing the agents for a couple
thousand devices.

Worse, if the ultimate destination of that data is outside the firewall,
you might find yourself asking the network team to punch dozens
(or hundreds) of holes for each combination of device-destination
IP/port. And if you need the same data going to multiple destina-
tions (think “syslog”), you might find yourself using a tool like
samplicator to duplicate it and send it in both directions.

Our point is that the “send it direct” method is easy initially, good
for a small proof of concept, and simple to manage. But it doesn’t
scale, and it doesn’t even always do what you need. That said, there
are circumstances when you don't have a choice - many SNMP
systems just need to be polled directly in order to work reliably.

And that takes us back to a point we made earlier: There’s no single
golden monitoring tool that will serve all your needs. In combina-
tion with solutions that scale better, you might find some systems
that also need a setup like this.

Our suggestion is to manage it like you would any exception: docu-
ment both the reason and the details of how it’s implemented, and
move on with life.

Transport | 45

https://github.com/sleinen/samplicator

Pattern: Replicating to multiple network analytics
systems

For anything except small environments - testing a new tool, seeing
how a new device or system responds to monitoring, performing
unit or integration tests, etc - sending all your data directly is not
really viable. So what is?

A simple, common, and well-established pattern is one that uses a 3-
tier model to collect the data using inexpensive (from the standpoint
of both cost and compute resources) middle-layer systems before
sending it to its final destination.

This design pattern has been in place almost since the inception
of monitoring. Systems send data - either through agents, built-in
subcomponents like SNMP (which is effectively an agent), or a
script that opens a specific IP/port combination (<cough>AGENT!
<cough>)on-box - to a device that runs software purpose-built to
collect the data, aggregate it with data coming from other systems,
and send it all to the main monitoring and observability solution.
Data might be sent as a continuous stream, in bursts, or a combina-
tion of the two.

Lest you are left with the false impression that this middle-tier
“collector” system needs to be powerful, I want to point out that
the nature of the task - receiving data (usually on the same local net-
work), quickly processing it, and sending it along - isn’t as compute-
intensive as it seems. Therefore, collectors can often operate in
extremely economical form factors, including VMs and containers.

There are multiple benefits to this design. Foremost among them is
the obvious advantage over the previous pattern. The single collec-
tor means fewer outbound connections and firewall exceptions. It
also provides the opportunity to implement security options for the
data before it moves to the next stop along the way. And speaking of
moving the data, because collectors are usually in the same network,
it means you reduce egress costs (especially for cloud environments)
because the data can be filtered before it exits the network.

And that takes us to the concept of pipelines and how they relate to
data wrangling.

Let’s (briefly) start with the fundamental concept: In Unix (and
unix-like systems like Linux, which I'm going to abbreviate to *nix

46 | Chapter2: Wrangling Telemetry

from hereon), pipeline was the term for taking data of some kind
(whether it was a static value or the output of a command or the
contents of a file) and applying one or more other commands to
it, so that the result was transformed. It was also called pipeline
because it used the pipe symbol (|) to push data from one command
to another.

The simplest example of this was taking the output of a file list
(using the 1s command) and pausing after a single screen of infor-
mation by piping it through the more command:

1s | more

While we could wax poetic about the most elegant *nix pipelines
we've written in our day, both Leon and Avi will show uncharacter-
istic restraint. Our point wasn’t that *nix pipelines are similar to
modern observability pipelines, but rather that they are the concep-
tual ancestor.

Data -> pipeline () wrangling happens here () -> output sent to
destination.

Pipelines, as they apply to modern monitoring and observability, are
far more powerful (and nuanced), so I want to take a moment now
to explain some of their capabilities.

Input normalization

Normalization refers to taking multiple forms of input and making
them consistent. For example, if some data is in bits per second,
and other data is in bytes per second, and still other data is in meg-
abytes per second, the process of normalization means converting
everything into a single consistent scale. This, the more commonly
understood type of normalization, is actually semantic normaliza-
tion.

Another form of normalization that might occur is syntactic normal-
ization. This is the process of making the output match the same
structure. For example, one set of messages uses this structure:

{ID=123456, os="windows", cpu=12, mem=32}
And another looks like this:

ID CPU MEM 0OS
123456 12 32 windows

Transport | 47

Syntax normalization would shift one or the other so that they both
used the same order, method of assignment, etc.

One important thing to note about input normalization is that
there’s no one-normalization-fits-all. The goal of this step is to get
all the incoming data into the same scale and format, but with
the intention of making it easy to further massage in later steps
(manipulation, replication, etc.).

Data Set Manipulation

This step, which actually includes multiple variations on the theme,
is all about taking the full set of data and somehow paring it down.

Filtering. If you've ever run a database query, you already under-
stand filtering. If you only want customers from Ohio, or just the
customers from Cleveland, Ohio, or just the customers named
“Leon” from Cleveland, Ohio... then you're filtering.

Specifically, you are performing row filtering. You want all of the
fields, but only for certain records/rows that match criteria.

It’s important to note that you can also (or alternatively) filter col-
umns. If you want just the Last Name, Hair Color, and Dog’s Name
columns - even though your database has a host of other details
like eye color, cat’s name, first name, etc., then that’s an example of
column filtering.

Obviously (but were going to say it anyway), you can filter both
rows and columns at the same time, for good reason.

Aggregation. Aggregation is the act of summarizing multiple rows
into a single one, with numbers combined or manipulated in some
way to result in a single value. If you've ever used a spreadsheet, the
standard aggregation options should be familiar:

SUM
Totalling all the values

AVERAGE
Add up all the values, divide by the number of values in the list

MODE
Display the number that appears most frequently

48 | Chapter 2: Wrangling Telemetry

MINIMUM
The lowest value of the set

... and so on.

It's important to note that, while aggregation can occur in the pipe-
line phase, it may also be an operation thats done once the data
is in the destination repository as well. For example, data may be
collected and transmitted every 5 seconds, and stored that way ini-
tially. But after 7 days, the data is aggregated into 1-hour summaries
(averages). And after 30 days, the data is further summarized to a
single row representing the average for the day.

Rollup. Rollup is also sometimes referred to as “flattening”. It’s the
act of taking multiple rows of data and turning those row values into
columns. An example may make this easier to quickly understand.
Let’s say my data looks like this:

Interface ID Port Date Bandwidth (Gb)

12345 8080 1/1/2025 30.7
12345 443 1/1/2025 100.5
12345 8080 1/2/2035 27.6
12345 443 1/2/2035 50.2
67890 8080 1/2/2035 78.9
12345 8080 1/3/2035 36.1
12345 443 1/3/2025 222
67890 8080 1/3/2025 85.4
67890 443 1/3/2025 99.7

If you look, you'll see that we're really just talking about two inter-
faces, and the data they sent on two ports over three consecutive
days. So we can “flatten” this by turning the port-day combination
into columns:

InterfacelD 8080-1 8080-2 8080-3 443-1 443-2 443-3

12345 30.7 27.6 36.1 1005 502 222
67890 78.9 85.4 99.7

From the example, you can see that with rollup/flattening, we send
fewer rows of data, even if were sending more columns. Depending
on your application and/or the ultimate destination of the data, this

Transport | 49

might be advantageous either from a presentation or cost perspec-
tive.

You can combine rollup with aggregation to great
effect, by taking multiple aggregation operations (sum,
average, min, max) and combining them to a single
row:

InterfacelD Date Sum Min Max Mean Median Mode
12345 1/1/2025 300.767 36.1 100.5 44.55 334 nul

Sampling. Sampling also involves only taking part of the total data
set, but it shouldn't be confused with filtering. Filtering is both
specific and intentional - the query you write determines which
records and columns are kept or not. Sampling, on the other hand,
uses an (almost) random method of determining which records to
keep.

Before diving into how sampling works, we need to address exactly
why youd want to sample in the first place. Once again, the heart
of the issue is that your observability system simply has too much
data to handle. It’s either too expensive (to transport, process, or
store) or its too big to use effectively (queries on the entire data
set are cumbersome or create their own compute issues). You need
to reduce the overall volume, but there’s nothing about the data set
that lends itself to filtering. Any record might be useful, but keeping
every record is untenable.

In addition, while any record MIGHT be useful, the reality is that
a lot of telemetry data is repetitive. If a large number of your data
points show the same thing, you dont need every single one to
meaningfully observe your system. You just need to show a repre-
sentative sample of the records you see.

This is where the concept of fidelity comes in. Back in the 19507,
audio manufacturers began using the term high fidelity to describe
the way their equipment faithfully reproduced sound to be as close
as possible to the original recording. The concept, if not the exact
term, carried over to images, and especially to digital photography.
But what was discovered was that fidelity mattered less with images.
In fact, certain elements of an image could be removed (reducing
fidelity) without any difference distinguishable to the human eye.

50 | Chapter2: Wrangling Telemetry

The point we're making here is that what’s true for images is true for
telemetry as well. You can lose some data but retain the integrity of
the whole, while achieving a meaningful reduction in the overall size
of the data set. That’s the intent behind sampling.

There are two common sampling methods: Head and Tail.

Head-Based Sampling
This is where sampling occurs as early in the pipeline process
as possible - before the entire telemetry record is inspected. The
upsides to head sampling are that it’s easy to understand, easy to
configure, efficient, and can be implemented at any point in the
pipeline.

But we'll be honest: there is a lot to dislike about head-based
sampling. Youre more likely to miss interesting/useful data.
Worse, you might never know what youre missing or that you
missed it at all. That said, it does have a place in sampling strate-
gies. There are two primary head-based sampling techniques:

Consistent Probability (aka Deterministic)
By far the most common, this technique uses a straight
ratio - sampling every 10th record, for example. There’s
no further rhyme or reason to it. Youre just grabbing a
mishmash of data and hoping/believing it’s representative
of the whole.

And, we have to admit, for gigantic data sets, it probably IS
representative.

Parent
If the records youre dealing with have relationships to
other records (sometimes referred to as context or parent-
child), then this sampling method makes an initial decision
about the parent record and then propagates the decision
to all related records. If the parent record is dropped, all
subsequent records are, too.

Tail-Based Sampling
As you can probably imagine, tail-based sampling happens in
the place opposite from head-based sampling-meaning at (or
near) the end of the process rather than the beginning. Head
sampling doesn’t wait for the complete data set to be recorded
before deciding to keep or drop it. Tail-based sampling does.

Transport | 51

Because of that, there are a few tail-based sampling methods we
should discuss:

Dynamic sampling
This adds a data element to a record that indicates the
frequency of this type of record, and samples it more often
for less-frequently produced results. Example: if sampling
on HTTP status code, it will sample 404 results more often
than it will for 200.

Rules-based sampling
This combines the concept of filtering with dynamic sam-
pling. For example, 100% of records with error conditions
are sampled, and all other records use the dynamic sam-
pling method.

Throughput-based sampling
This technique looks at the overall volume of data records
being processed, and drops any above a fixed threshold
of records per second. Thus, on a second-by-second basis,
records are treated as first-come-first-accepted, but over-
all, the ratio of the types of telemetry is (somewhat) main-
tained.

Deterministic probability sampling

If youre thinking, “Hey! The editor made a copy-paste
error!” you need to get off Gary’s back because he’s awe-
some, and we did this on purpose. The truth is that you can
ALSO use a ratio at this point in the pipeline if you want. It
works the same way; the only difference is that you might
have already dropped (sampled out) a bunch of records by
this point via other sampling methods.

What's that you say? “You're totally sorry about thinking ill
of Gary, but what do we mean “might have already dropped
a bunch of records via other sampling methods?”

We are happy to say youre not limited to a single sampling
method within a pipeline.

e You could create a rule that samples just 20% of the
records with “OK” conditions (i.e., rules-based);

» Then use dynamic sampling for each of the error con-
ditions;

52

Chapter 2: Wrangling Telemetry

o Then have a throughput-based sampling rule in place if
the volume of records still exceeds a threshold.

With all of that said, I will leave you with a thought from a different
O'Reilly book, Learning OpenTelemetry, by Ted Young and Austin
Parker:

“Filtering is easy; sampling is dangerous.”

“How to filter your telemetry is usually obvious - simply throw out
any data you do not plan on ever using. When and how to sample
is a much more difficult question to answer. [...]there is always the
possibility for a critical error to occur infrequently enough that it
is missed entirely by a sample. [...] missing any errors at all seems
like a bad quality for an observability system to have! [...but...] tail-
based sampling could actually cost you more in machine resources
than you save in network egress costs.”

Our conclusion aligns with Ted and Austin on this: avoid sampling
until your egress and storage costs become significant. Lean instead
(and first) on filtering, compression (discussed later in this chapter),
and simply being intentional about the telemetry you need and want
in the first place.

Output normalization. You've filtered, you've rolled it up, you've sam-
pled it, you've sliced it, diced it, and made it into julienne fries. Now
it’s time to send your data on its way. This step is actually pretty
straightforward because the tool youre using - whichever one it is
- will, if it’s any kind of pipeline tool at all, do almost all the heavy
lifting for you. All you have to do is make a few choices and indicate
them in the right spot in the (probably) YAML file:

First: What syntax do you want?
You've got a handful of choices, including JSON, CSV, and
GNMI. The answer will likely be found in the system you’re
sending the data *to*.

Second: What semantics do you need?
When it comes to data, “semantics” is just a fancy word for
“what are the columns in your database called, and what order
do they appear in?” Many target systems require data to be in a
particular order. That’s all this step is asking you to specify.

Third: What transport will you use?
Like spice on that famous desert planet (no, not Tatooine, the
other one), the data must flow. And to do that, you have to

Transport | 53

pick your poiso... I mean protocol. Like syntax, you have a
handful of options to pick from, including Kafka, TLS, GRPC,
and OTLP. But (again, like syntax) the one you use is likely
going to be determined for you by the destination system. Your
job here is simply to indicate that protocol so that the pipeline
can do its magic.

Replication. You've filtered, you've rolled up, you've sampled, you've
sliced, diced, and made julienne fries. Now it’s... wait a minute, we
already said that!

OH... I get it! We duplicated the same data, and we're sending it out
again! It turns out that your pipeline can send data to more than
one place at a time. We'll cover this as its own pattern/stand-alone
process in the next section, but there are good reasons why you
might want to utilize this aspect of pipelines instead.

While the techniques we'll cover in the next section focus on dupli-
cating the data exactly, with no (or minimal) changes. Replicating
data within the pipeline allows you to take the same source data,
transform it two (or more) different ways, after which you can send
every version in its own direction.

But there are downsides to be aware of:

o Some telemetry bus (i.e., pipeline) systems don't have connec-
tors to some external vendors. If you end up in one of those
mismatches, you either need another telemetry bus (which is...
not great) or you need to fall back to one of the other patterns
(separate replication, vendor agent, etc.)

o Overall, the tools you need to manage a fleet of collectors/tele-
metry buses aren’'t as mature as they could be I mean they will
be I mean, you might need.

+ Depending on which telemetry bus/pipelining system you use,
load balancing - moving a group of systems, a single discrete
system, or a fraction of a system’s metrics - can be complicated.
Or it might be automated to the point where you have no
control at all. Neither of which is optimal depending on your
needs.

54 | Chapter2: Wrangling Telemetry

ORDER NOW! OPERATORS STANDING BY!

I've dropped the “depending on which tool you use” comment a few
times now, which is about when, if this book were a thinly veiled
bit of marketing copy, wed say, “BUY CHOCOLATE FROSTED
OBSERVABILITY BOMBS TODAY!” But this isn't, so we won'.
There’s a host of good options out there, both open-sourced and
closed, for you to choose from. My only goal here in pointing out
that some tools do/don’t perform a certain type of function is to
help you build your checklist of things you might need.

Strike that, Reverse it

After talking about telemetry busses as a one-way trip from the
source system to its final destination, we want to take a moment to
point out that some vendors are now allowing you to do the exact
opposite: Send your data in its raw form and store it as-is in what’s
come to be called a data lake. (Fed, of course, by a crystal clear data
stream, which babbles next to an eco-friendly data warehouse. Feel
free to set up a data cabin and sit by the data shore doing some light
data fishing with your faithful data dog. But I data-digress...)

The concept of a data lake is that the information stored in it is
all in its natural/raw format. You can then specify a chunk of that
telemetry and “play it back” - re-running the exact flow of data as
it was stored. As you do THAT, you can run any transformations
- normalization, filtering, sampling, and the rest - and then use
(analyze, display, report on) it however you like.

The benefits of this technique include the fact that you’ll lose none
of the fidelity of the original data. The collectors or relay systems
(agents) will have far more processing capability available for mov-
ing telemetry since no other functions (filtering, sampling, etc) will
be done. You can use that available compute power to focus on
compressing the data to reduce overall traffic volume (and thus
cost). And since data lakes tend to be in the cloud or other locations
with lots of compute resources, the act of replaying the data can be
done faster because more processing power is available.

Options to replicate telemetry: Separate replicators

You've filtered, you've rolled up, you've sampled, you've... wait a
minute, we already said that! OH SNAP! We already said that, too!

Transport

55

Because replication means that if it’s funny once, it'll be funny over
and over again, right?

Ahem.

If you are:

1. In a situation like the one we described in the “Sending direct
to each system” section, where you have data that needs to go to
multiple destinations, but

2. You can't employ a sophisticated telemetry bus type option like
the ones we outlined in the “Pattern: Replicating to multiple
network analytics systems” section, then your next best option
is to use a tool or utility that takes a single raw data stream and
splits it into two identical branches. Doing so allows whatever
you're using - agents, home-grown scripts, etc - to handle things
from there, sending each discrete copy of the original data to
whatever destinations you're using.

If this sounds familiar, it’s because we’re essentially talking about a
pumped-up version of the tee command line utility found on Unix
and Linux systems - which is itself a computerized implementation
of the humble t-splitter found in plumbing.

Once again, you might expect us to now dig into various tools that
do this function, but our job in this book isn’t to point you toward
any particular tool, whether open-source or closed. We've described
the issue and the potential solution, and we trust you to do the
research from here.

Observing the telemetry flow

Quis custodiet ipsos custodes?
Who will watch the watchmen?

—Satires by Juvenal

Yes, this is the part of the book where we talk about monitoring for
your monitoring. If you already know, you know, and you should
feel free to skip to the next chapter. But if none of what I just wrote
is having you nod your head and/or roll your eyes, please keep
reading.

One of the challenges with observability - network or otherwise -
is that it’s so challenging in its own right, that there are so many

56 | Chapter2: Wrangling Telemetry

moving parts, that the journey from start to end is one of many
miles and many days; that once you have telemetry flowing its
hard to remember that simply getting it working doesn’t mean it’s
working well, or consistently.

Stripping away the poetry, what I mean is that sometimes we get so
caught up in just getting things working that we forget to put checks
in place to ensure that it - the monitoring itself - continues to work
the way we expect, the way it should, the way we need.

What kinds of issues might crop up with monitoring that wouldn’t
be immediately obvious because they cause a complete failure of the
datastream?

Sources have disappeared

This one should show up pretty quickly, even without monitor-
ing, but depending on the scale and scope of your environment,
“pretty quickly” still might mean hours or longer. So it’s prudent
to have a test in place to show if data stops coming from various
sources. Now (hopefully) obviously, were not suggesting you
monitor every target system twice - once for the actual monitor-
ing, and once to ensure that the data is flowing to the actual
monitoring. First, you should do this only for those sources
you consider critical. Second, the check were describing is not
on the system itself, but is essentially a heartbeat test in the
receiving pipeline.

Extending this concept further, a more thorough way to express
this test is to look for the “wrong quantity” of data - too little,
but also too much. Because a spike in data might be just as
concerning as none at all.

Consumers/destinations not accepting data
At the opposite end of the spectrum from disappearing sources
is the problem of destinations no longer accepting data. The
good news is that this type of check is both easier to synthesize
and far narrower in scope.

Records sent in the wrong “shape”
If the data comes to an agent or telemetry bus in a format it’s
not expecting, it creates a problem for every step after that,
from normalizing to filtering, sampling, and the rest. Worse is
when records are inconsistent - some come in as expected while
others are, for lack of a better term, malformed. Being able to

Transport | 57

identify when this happens is the first step to creating more
robust rules for data intake.

Not dropping data

Remember all those discussions about filtering, flattening, and
sampling? What if the observability system just... doesn’t? This
causes more than just a problem of sending more data than
you want. This would also cause you to send the wrong data.
And it could mean that you have unnecessary data in such
volumes that the real issues are lost in a needle-in-the-haystack
situation. Plus, all of those issues happen on top of the first and
most pernicious one: every dashboard, every alert, every report
represents a query against some (or all) of the data. All those
queries add up fast and impact performance, user experience,
and the ability of the system to do its core functions.

Records (or sub-records) are disappearing

This issue is more insidious and even more damaging to a
healthy and reliable observability system: Data that is being sent
by the originating sources, received into the agent or pipeline,
but lost somewhere before reaching their destination. The effort
to create a system that accounts for each record in this way is by
no means trivial. But without it, the reliability of the data stream
is difficult to ensure with 100% confidence.

Some of these issues only require you to validate and check for
a short period, like during setup. Some are things you should do
occasionally, as part of a routine validation. And some might need
to be done persistently. Kind of like monitoring and observability
itself.

One example of a persistent check is called “beacons” (sometimes
referred to as a “deadman’s switch”). This is a regular, but synthetic,
data element thats created at (or as close as possible) to the same
targets that are origins of data streams. It flows through the system
all the way to the typical destination for that telemetry type. An alert
is generated if the beacon DOESN’T arrive. The goal of this exercise
is to validate your observability system end-to-end, and to have as
advanced a notification of its failure as possible.

58 | Chapter2: Wrangling Telemetry

Enriching Telemetry

What Is Enrichment?

Most of us first encounter the word “enrichment” when we're in the
kitchen with a beloved relative, learning to bake.

TRIFLE skewed. His daughter runs a bakery out of
the house, and his primary source of exercise comes
from shuttling 50lb bags of flour to the basement.
His primary reason for needing the exercise is, as I
mentioned, the bakery. Nevertheless, we humor him
when he insists that “baking 100 loaves of challah
and three cakes every week is TOTALLY NORMAL
BEHAVIOR”.

m (Avi speaking) Leons perception might be JUST A

Enriched flour has extra nutrients - iron, B vitamins, and the like,
which aren’t normally found in regular flour - added. Thus, “enrich-
ing” data means inserting additional information into a data stream.
It’s the exact same process, although not nearly as delicious.

By itself, telemetry data has information specific to the observation
point and source. for example, flow data on routers contains infor-
mation about source, destination, protocol, flags, and other things
the router is aware of.

But if you need to find out “which users are having issues with
which applications,” somehow the telemetry needs to be enriched
with additional information.

We think of these additional data sources as metadata - data about
the data - and metadata needs to be gathered and put into some
sort of lookup table, or in more complex scenarios, a set of rules for
applying the lookups.

Adding metadata in this way is commonly referred to as “enrich-
ment”.

Types of Enrichment

Some of the most common types of enrichment for network teleme-
try are:

Enriching Telemetry | 59

Routing data

For analyzing how traffic is flowing across networks, and especially
across the internet, it's helpful to have BGP routing information,
especially the AS_PATH (a list of “network numbers”, called ASNs)
and Community strings (lists of policies to be applied by a given
network). Adding elements like this to the device metrics, traffic,
and performance data youre collecting allows you to create more
sophisticated and robust alerts, searches, analysis, and visualiza-
tions.

If you hang around a certain type of network nerd you will hear
them mention AS-es, or ASNs (“Autonomous Systems” and “Auton-
omous System Numbers”, respectively). They may even refer to
common applications by their ASN (Netflix is AS40027, for exam-
ple. “Oh yeah, that'll kick you in the old AS40027! Amirite!?!”). But
what is an AS, exactly? And more importantly, is there an ELI5
(Explain It Like 'm 5) version for people who don’t live and breathe
routing tables and network protocols?

Yes there is, and here you go:

At its most basic level, an AS can be thought of as your ISP’s router
network. It is a self-contained, self-maintained, and self-optimized
(where “self” is the ISP) collection of routers that allows traffic to
enter, traverse, and exit as quickly and efficiently as possible. It’s
also a full mesh style network, where every single device knows
about (and all the different ways to get to) every other device.

What are AS-es? The ELI5 version: Let’s imagine that “the internet”
is like all the roads on the planet. Every road goes somewhere, and
you can (more or less) get from any road to any other road (eventu-
ally). In that example, an AS is like all the roads in a city. The city
maintains all the roads inside the city and publishes maps to help
folks get around quickly inside the city. BUT it also publishes the
fastest routes OUT of the city to get to other cities (this way to LA,
that way to Cleveland).

Some network devices can add the source ASN to telemetry, but
very few can add the full AS_PATH or other BGP attributes.

Since there can be 1 million or more BGP routes to combine, doing
this kind of enrichment requires robust and scalable systems, which
we'll talk about later.

60 | Chapter2: Wrangling Telemetry

Geography: Physical location

For devices in your network that you know the location of, enrich-
ing traffic, metrics, logs, and other data with the device location
(usually city and country, and sometimes even lat/long) can enable
many use cases from simple querying (“show me total traffic in the
US”) to enabling map displays.

Geography: IP Geolocation

A common further geography question people want to ask involves
the source and destination city, country, or other geographical sli-
ces/dices. Because it's WAY more interesting to see “I have 100gbps
of traffic going from Cleveland, Ohio to Timbuktu, Mali” than a
chart that shows “traffic from 134.228.65.139 to 102.130.232.0”

Application/Service

In addition to slicing and dicing traffic by geography and network,
it’s also really useful to be able to ask questions about application
traffic traversing the network. In this case, were identifying an
“application” by the combination of ports, protocols, and (some-
times) IP addresses.

Is this a gross approximation? You bet! But it’s also fast, simple, and
remarkably accurate in a large number of use cases. - i.e., TCP port
23 is “ssh”, TCP port 443 is “Web”. Yes, Leon and I both acknowledge
that any application can decide to run on (almost) any port it wants
to. But we must insist that you, dear reader, equally acknowledge
that just because they CAN doesn’t mean they DO.

Systems of record - “What is this IP address really?”

Many organizations have systems of record, like IP Address Man-
agement (IPAM) systems or device tracking systems such as NetBox.
These tools - as well as application orchestration systems like Kuber-
netes - can be mined to get even more context on what different
IP or even IP/port combinations are really doing on your network.
Other backend systems, like DHCP or authentication services, can
provide similarly useful data to map a user (or even a specific user’s
computer) to an IP.

As a real-world example that companies are still very much interes-
ted in, you could use those sources to enrich every monitoring data
point from a device and include its physical location down to rack

Enriching Telemetry | 61

https://netboxlabs.com/

and position inside the rack. Another example: using those sources
to be able to tellthat, right now, a given IP and port combination is
running the auth1 service for application “f002”.

This data can be extraordinarily useful when merged with network
telemetry, but there are a few challenges to be aware of:

o The volume of mappings can be very high. In some organiza-
tions, they can surge into the millions; and

» Modern applications and infrastructure, especially the infra-
structure underlying “the cloud” and cloud-native uses of that
infrastructure, can change rapidly - as much as every second. So
live streaming updates may be required in order to get accurate
data / attribution.

Business Metadata

Another valuable use case for enrichment of network telemetry is
adding in context like customer or internal group/division associa-
tion.

For service providers, that can be as simple as associating all teleme-
try coming from a specific interface that’s connected to (“terminates
a customer link”, as us old ISP veterans say) as being for that Cus-
tomer ID.

For both enterprises and service providers, sometimes customer
traffic can be multiplexed inside larger interfaces or come in over
the internet, and association by creating a customer<->IP address
mapping will be required.

As an example, an enterprise may be trying to debugg a customer
complaint about not being able to use a given application. Having
the ability to query underlying network traffic by customer would
illuminate whether that traffic is even reachingthe enterprise at all;
or not making it to (or through) load balancers; or being blocked
there; or having some other issue.

Another use case, with the sad-but-true observation that every cus-
tomer is equal but some are more equal than others, is when net-
work providers tag (i.e. enrich the data to show) priority customers.
This then allows the provider to capture, display, and use the tags in
their monitoring system, to do things like escalate alarms if issues
occur with the aforementioned VIPs.

62 | Chapter2: Wrangling Telemetry

As valuable as this is, these types of enrichment often get tripped
up because of a “system of record” challenge. There may not be a
single place to get those mappings. It's emblematic of how important
this enrichment has become that, as part of the network automation
efforts at many enterprises, a critical first step is to build a single
(or federated) system of record to be authoritative for customer and
other mappings.

Building and management enrichment

In modern infrastructures, things are constantly changing, even as
fundamentally (to the networking practitioner) as information like
which IP address is being used for what task or system - and where,
and when.

Making sense of network data requires enriching it with application,
location, BGP path, and other types of these dynamically changing
metadata sources, and therefore enrichment can’t be done at the
time you're running a query within the monitoring solution. That
enrichment has to be done live (or nearly so0), at the moment your
observability tool is perceiving and receiving the data.

We'll talk more about this later but on solution to this is to leverage
streaming databases and pipelines that can do “streaming joins” to
add on all of these enrichment types.

The big things to know about selecting and feeding these are:

1. Some of these systems have limits that are way below the scope
or velocity of network data and how it changes - for example,
there are on the order of 1 million BGP routes and they can
change at a rate of tens of thousands per second (or more).
So static tables loaded every 5 minutes, or with limits of tens
or hundreds of thousands of entries, won't allow joining BGP
routes, many enterprise application mappings, or other kinds of
metadata sources.

2. Nobody is going to do this for you (ask us how we know).
It’s your job to find and manage feeding the data to be joined
in the enrichment phases, and this can be a bit of a puzzle
hunt, especially across teams in enterprises where ownership
of IPAM, customer mappings, application orchestrators, and
systems of truth for network are widely spread across owners in
many unrelated teams, departments, and even (sub) companies.

Enriching Telemetry | 63

Normalizing Telemetry

Unifying and Normalizing Telemetry

For each kind of telemetry there are often multiple implementations
and sources, which can each have different formats and meanings!
This is, obviously, why observability tool vendors drink. After you
collect it, a critical part of making it useful is to “normalize” it into a
common representation. We covered normalization - both the need
for it and some of the ways it’s done - earlier in this chapter. We're
mentioned it again here to put it into its proper context in terms of
the whole “wrangling” process.

Normalizing Device Metrics

Wait, didn’t we just mention “normalizing” above? Well, yes. But
it was in the context of telemetry overall. Here were specifically
referring about what it takes to normalize device metrics, which has
its own set of nuances.

Network devices expose many metrics about their physical and log-
ical state - for example, interface statistics, temperatures, routing
table states and counts. The same metric, bytes sent over a given
interface, might be available in different formats and protocols. For
example:

o Via SNMP as: <ifMIB>
o Via Streaming Telemetry as: <openconfig target>
e Via API as: <JSON>

o Via the router’s CLI as text: <sho int output>

To make sense of how many bytes are going through interfaces for a
set of devices, it’s often necessary to collect data by multiple methods
across your devices.

I also want to point out that it’s VERY possible to collect the same
metric for the same time period from the same device using multiple
methods. There are a variety of reasons for this - none of which are
particularly satisfying - but I mention it here simply to reassure you
that YOU are not doing something wrong if this happens to you.
The main callout here is that it's something you need to watch out
for.

64 | Chapter2: Wrangling Telemetry

Normalizing metric names

That leaves you with the job of normalizing those all to a common
format - after the data has been ingested into your primary system,
but before that data has been written to storage (i.e. the database).
Because if you don’t, you'll be forcing the users to swive between
multiple systems displaying on multiple screens, trying to do it all in
their head at query time.

Unfortunately, there’s no IETF or multi-vendor standard on this.
Like parenting, we're all just making it up as we go along. Of course,
some of us have the benefit of years of hard-won experience (again,
like parenting).

One common way to do this is to to build a translation layer and
produce the output as a metric series, so that interface byte count
above would become a series of bytes using, for example, a graphite-
style metric name like:

network.<devicename>.interface.bytes

Normalizing metric measurements

There are two additional , and common, things you may need to
adjust for when comparing metrics across devices and device types:

o Counter vs. rate - Many things are measured on network devi-
ces in counters - for example, just a total of bytes in or out
across an interface. To turn that into a rate (bits/second) then
requires observing the counter across two time points and
dividing the delta in counter (total bytes seen) by the time win-
dow. (Sidebar note: This is why it’s hard to get the same counter/
rate from two systems observing the same network elements).
You should also understand that even under the category of
“counter” there are variations:

— Increase-only: the number goes up and up and never stops.

— Increase with a resetting: the number goes up to a fixed
ceiling, and then “rolls over” to zero. Obviously that requires
a bit of math because if the number “now” is bigger than the
number “before”, we have to realize there was a rollover and
do some quick addition.

— Increase and decrease: the counter can move in both direc-
tions, representing the current state irrespective of the previ-
ous value.

Normalizing Telemetry | 65

o When you are using aggregated interfaces, some devices can
report on the metrics for the aggregate as well as the “member”
interfaces, but some can only report on the aggregate or the
member interfaces. As a result, to let users (and our machine
overlords) access the data consistently, some mapping is needed.
Sometimes this is done in the collection process, and sometimes
this is done in the normalization layer.

o Performance, when exposed via device metrics, needs special
consideration, covered below.

Normalizing traffic data

There are many sources of data that all show “what went where and
when”. Some of these include:

o NetFlow, IPFIX, and sFlow from routers
+ eBPF and flow from virtual and physical servers
» VPC Flow Logs from cloud providers

« and even logs from web services, load balancers, service meshes,
and firewalls.

Just to be extra clear, within these divisions there is nevertheless
a lot of overlap. For example web logs (somewhat obviously) have
application context, and some even have more protocol-level infor-
mation like the more network flow protocols. And of those network
device protocols, sFlow knows about VLANs and MAC addresses
but NetFlow v5 doesn't.

Breadth of traffic dimensions

As with network device metrics, traffic data can come in different
formats like NetFlow v5, NetFlow v9, IPFIX, sFlow, web logs, or
eBPF traffic observations.

Traffic records have many metric points embedded within one
“row” or record, and are almost always representing counters.

The main complexity of normalizing traffic records is that different
types of devices, and different “age” of protocols, report on a smaller
or larger set of potential dimensions of the traffic data observed.

66 | Chapter2: Wrangling Telemetry

For example, almost all protocols and devices will report on some
core elements like protocol, source and destination IPv4 addresses,
and source and destination port numbers.

NetFlow v9, IPFIX, and sFlow will usually report on IPv6 addresses
and VLAN numbers (if any), but NetFlow v5 has no understanding
of those data types.

Almost all network forwarding devices will also report on TCP flags
(for TCP traffic), but web logs won’t have TCP flags because they’ll
usually be observed at a higher level of the protocol stack.

So how to combine traffic data from all of these sources usefully?

The key is to not be too fussy - particularly about NULLs, and to
help users keep in mind how much of the network is observable in
some of the more “advanced” dimensions.

For example, common questions about network traffic like “how
much traffic was seen across the network yesterday” will be answer-
able using input data from each source.

But “how much IPv6 traffic was seen yesterday” won’t include slices
of the network reported on by devices that only support NetFlow v5.

Sampling

A secondary complexity of normalizing traffic data is that there’s
just so much of it, especially at modern traffic levels. We already
introduced the concepts behind sampling in Chapter 2, but to re-
iterate: sampling is required to avoid overwhelming the network
devices and telemetry systems handling the data.

This is important to understand in two contexts:

o First, the data you receive may come pre-sampled. Some net-
work flow protocols will record the sample rate (which can, on
some implementations, change over time), and others do not. If
you consume data from a telemetry bus this could be a further
complication.

By way of example, at Kentik we built our backend with the goal
of robust observability (which includes sampling in it's many
and splendored forms), and therefore we made sure to record
and store the sample rate per record along with the data, so
that we can adjust the results at query time. But (and this is not

Normalizing Telemetry | 67

a humble-brag, it’s just a fact) most backend database systems
(especially the off-the-shelf varieties) don’t - and often can’t - do
that.

So generally you will need to multiply the counters like number
of bytes and packets by the sample rate at ingest time so the
numbers are correct at query time.

» Second, you may need to down-sample (meaning sample the
already sampled data) because the telemetry ingest rate is
too high for your ingest, normalization, enrichment, pipeline,
and/or storage and query systems. In these cases you'll need to
do that sampling and pass on how much was re-sampled to do
the “up sampling” of counters as described above.

Not over-counting (sometimes called “deduplication”)

If you collect data from every device in your network, you’ll proba-
bly have to deal with making sure that you don’t multiply count the
bytes flowing across it.

One way is to only collect flow from one “plane” of your network
- i.e. inbound from the internet edge, OR outbound to your WAN,
but not both.

Another (older) technique was to “deduplicate,” where you would
assume all the traffic flows were unsampled, send everything to a
single big or logical collector, and keep just 1 copy for a given “flow
hash” (combination of protocol, source and dest IP, source and dest
protocol, for a given time range). Again, it'’s imperative to point out
that the underlying assumption here was that all the traffic flows
were unsampled.

But in a world where network devices are mostly generated sampled
traffic data via NetFlow, IPFix, and sFlow, you will rarely see enough
copies of the same traffic communication in the same time period,
so deduplication doesn't really help.

A more modern way of dealing with the single-counting challenge
is to “tag” each traffic source with what part of the network it is -
backbone, data center edge, data center, cloud edge, cloud, internet
edge, etc and then structure your queries so that they only ask
about traffic across the one “plane” at a time mentioned above. This
approach can be effective at scale and with very diverse networks

68 | Chapter2: Wrangling Telemetry

but can require some planning in how you set up queries, alerts, and
dashboards.

Normalizing Performance Telemetry

Most teams (and more to the point, most monitoring tools) com-
bine performance telemetry data (like loss, latency, and throughput),
and allow comparisons of these measurements across kinds of meas-
urements.

Because the measurements are (almost always) in the same units,
the challenge is not the same as we saw with flows. It’s perfectly safe
to store the number of latency metrics (for example) observed from
different sources at a particular point in time; and then compare
them later.

The challenge here is understanding that when latency is reported
in network metrics or other kinds of telemetry, it’s often measured
differently from device to device.

For example, when determining “latency” (i.e. the time it takes for
a packet or message to get from point A to point Z), some devices
may look at TCP session setup time as the starting point; others may
be reporting on active performance testing (like an ICMP ping); and
others may be looking at a kernel's TCP timers. And because these
numbers are collected and sometimes aggregated across devices, it
really can appear to be apples-to-apples when it’s not.

Usually people do compare these latency numbers without trying
to adjust them, and honestly, that is (broadly speaking) OK. But it’s
important to keep in mind that any such comparisons should be
treated as directional (i.e. pointing toward a potential issue, rather
than not definitively identifying a specific problem) and not read
too much into, for example, a 20ms latency difference between two
80ms measurements made by different methods.

Normalizing Events / Logs

Structurally, things that report in long strings of text are typically
called “logs”, but, to paraphrase “Animal Farm’, some logs are more
structured than others.

Besides certain parameters that (usually) appear in all logs like time-
stamp and sending source, the real work regarding logs is putting
them into more normal (and normalized) schema. This makes them

Normalizing Telemetry | 69

better (easier, faster, more performant) for querying, and has the
added benefit of making them more “event”-like - telling you that a
(thing like this) happened at (X time), with (these parameters).

In the networking world, there are some router device logs that are
usually particularly interesting to look for and correlate - i.e. out of
memory, killed a process, login or config event, routing session or
interface down. Especially configuration events as those can often
lead to temporary issues, or worse.

The more structured the events and your storage of them, the easier
it will be to both search and correlate them with other telemetry to
debug issues (or prove that potential issues aren’t).

It’s true to the point of being axiomatic that, for IT folks, metrics
are often easier for many groups to fit into their mental model and
watch at a high level. It’s certainly true that metrics are easier for
tools detect, collect, and alert on..

So to take large numbers of logs and make them more understanda-
ble, a great approach is to put some structure on them and then turn
those logs into metrics - i.e. how many logins, interface transitions,
or high memory reports per unit time.

Normalizing Other Telemetry Types

So far we've covered flow-type data, metrics, and logs. Those are
certainly not the only types of data you will encounter. However,
from this point forward, everything else is simply a variation on
those three themes. For other telemetry types, you'll use some of the
same “meta” processes as for the more core network telemetry types:

o Figuring out what meaning is contained in the telemetry type.
» Mapping how that relates to other telemetry that you have

+ Often, summarizing or otherwise turning the new source of
telemetry into something you already store and work with
operationally

o Sometimes keeping the raw telemetry source

(Same general process - what is it, turn it into common intermediate
representation, make some editorial semantic decisions)

70 | Chapter 2: Wrangling Telemetry

Data Storage and Query

Data storage, ingest, and query requirements

Once data has been detected, captured, sampled, normalized, sam-
pled, transported (and hopefully not folded, spindled, or mutilated,
to hearken back to an old CBC show), it needs to be put someplace
(i.e., stored). And beyond that, it's not enough to just HAVE the
data, you probably want to DO things with it. Storing and working
with telemetry requires a database (or, in newer speak, “data store”).

There’s no magic database out there - each one has advantages and
disadvantages. And by disadvantage, I mean that if you try certain
insert and query patterns, you can crush (and now were back to the
whole “spindle and mutilate” thing) just about any database. So it’s
critical to find the best tool for the job, depending on the shape of
the telemetry and the anticipated or actual query patterns.

Dimensions of data that help guide choice of database

Not to get too spiritual about it, but data has a “shape” and even a
“texture”. This loosely refers to the scope of the data - the variety of
fields, the number of tables, and such - and the granularity of that
data. The shape and texture of the data, as well as that of the query
patterns you’ll use to extract and present the data, will help guide to
the best choice of database.

Some key considerations are:

« How many events/second are being observed and need to be
stored?

« How long do you want to store the data for?
+ Do you ever need to delete data?
» Do you need the database to handle adding enrichment?

+ How many columns or tag types do you need for the telemetry
type? Few? Dozens? Hundreds? More?

o How many unique values will you have per column - or per
unique combination of column (the “cardinality” of your data)

Data Storageand Query | 71

« Can you host the data in the cloud using a database as a service?

Or do you need to self-host for compliance, cost, or other rea-
sons?

The answers to these questions will provide you with context for the
discussions below, which delve into which databases do better with
varying shapes of telemetry data and query patterns.

Telemetry can still be easier than many kinds of data storage and querying
(sometimes)

Despite the implied complexity of telemetry data and that complexi-
ty’s impact on database selection, there are two aspects of telemetry
that make database selection easier:

1. Youre almost always “insert-only” - i.e., never deleting individ-

ual records, just letting them expire “off the end” There are
some potential complications here around GDPR compliance
and “right to forget” user information, but even the most
sophisticated shops rarely incorporate that kind of deletion into
their operational telemetry systems.

. Some kind of telemetry (in particular metrics) can be aggrega-

ted by “rolling it up”. After a period of time, granular data is no
longer relevant or helpful. At that point, rather than having data
points every minute (or less), telemetry can be grouped into
a single record that averages all the data for the hour. After a
longer period of time, those hourly averages might be summar-
ized to a single daily average. For readers who have a passionate
dislike of averaging (I'm right there with you), the point isn't the
specific summarization method I just described, but rather that
there’s a process by which hundreds or thousands of records can
be reduced down to a single (or at least fewer) amount. When
you do time-based aggregation like that, you lose detail and the
ability to ask questions of it. But the point is that this type of
summarization is only done after the point at which the more
grandular data is helpful or necessary; AND summarization
often comes with the ability to move the granular data to a
separate (cheaper, slower) data store for safekeeping long term.

For some more simple things like interface utilization, this is
rarely an issue as youre almost always trying to get some max,
average, or percentile for a given time period, and aggregates
suffice.

72

Chapter 2: Wrangling Telemetry

With traffic data though, rolling up summaries of how many
bytes, when, where, and/or by what protocol can severely limit
your ability to peer into the traffic because youd only see the
dimensions you rolled up. For example, if you only have rollups
of top talkers by source IP, protocol, or source port and want to
investigate what protocols a given source IP address was speak-
ing on, youd need a rollup combining source IP and protocol.
Without the foresight to do that, youd be out of luck.

Database Options

(Traditional) Relational Databases

Traditional relational databases like MySQL, Postgres, and Microsoft
SQL Server are very flexible and can be used - in theory - for most
kinds of telemetry, but - in practice - are not well suited for many of
them at modern scales.

Relational databases are tempting to use because everyone has them
running already and they’ll let you run almost any kind of raw
query (besides graph primitives) and also unlike some more modern
hipster databases, can easily modify and delete data. And even with
the databases which have the ability to run full-text search style
queries, they’re often not very performant, even with specialized
indices.

(connected to “modern hipster databases”)
m OOOOOHHH!! SHOTS FIRED!!

(or)

No you didn’t!

- Leon

Yes I did.
- Avi

Unless configured to effectively be columnar data stores (more on
this below), traditional relational databases have some major disad-
vantages when storing and querying the trillions of rows of data (no,
were not exaggerating) that you will get over time from modern
network observability telemetry sources. Storing data row-by-row
means that compression is limited, indexing overhead can be high
enough to slow down queries or even block ingesting for seconds

Data Storage and Query | 73

or even minutes, and without some fairly sophisticated partitioning,
rotating out or deleting old data can also be very painful.

In the network world, it's generally better to use relational databases
for metadata; for logs and events if they represent a very low vol-
ume; and potentially for network metrics like SNMP, but only if
your query volume is limited - meaning you query on a weekly
basis, as opposed to having dashboards reloading every second.
Traffic data, high volume metrics, and high volume logs are better
stored in other types of databases we'll talk about below.

Table 2-1. Summary Table

Feature RDBMS Strength RDBMS Limitation
Querying Rich SQL support, joins, constraints ~ Slow for time-series and analytical
workloads
Ingest Good for moderate workloads Poor at bulk high-volume writes
Performance
Schema Design Enforces structure and integrity Inflexible for evolving or nested
telemetry
Scalability Fine for small/medium Lots of effort to scale horizontally
environments
Time Series Possible with plugins (e.g., Not native in most relational engines
Support TimescaleDB)
Columnar Support Possible with plugins for columnar ~ Not built-in, limiting compression and
storage scanning speeds

When to Use Relational Databases for Network Telemetry.

» Youre building a metadata-rich telemetry platform that
requires joins, lookups, and constraints.

« Your use case focuses on auditing, compliance, or configura-
tion changes, not massive streaming data.

» You operate at a modest telemetry scale (e.g., <10K inserts/sec)
and need strong transactional guarantees.

When to Be Cautious.

 You need to ingest millions of records per second from real-
time telemetry (e.g., NetFlow, sFlow, logs).

» You need efficient rollups, aggregation, or historical trend
analysis across time windows.

74 | Chapter 2: Wrangling Telemetry

o Your telemetry schema is frequently evolving or semi-
structured (e.g., JSON logs, flow data).

Metrics/TSDB

Time series databases (TSDBs) have evolved to the point where they
have become their own type of database, with most of that rapid
evolution occurring in the last 15 years. Older systems like MRTG
and RRDtool (which rose to prominance in the network monitoring
space) started the concept of accumulating “rolled up” summaries of
timestamped events. Some of these components, especially RRDtool,
are still around in many enterprises.

In the last decade, more generic time series databases - like Prome-
theus, InfluxDB, and VictoriaMetrics - have taken over for network
telemetry, and support large-scale time series data, with the caveate
that the data in question should, ideally, not be very “wide” - closer
to an SNMP IFMIB data point at a specific time from a specific
device, along with some associated device tags; than to a traffic/flow
record’s worth of data “stuffed” into a metric report, with flow values
represented as metric tags.

TSDBs generally fall down with regard to high cardinality (number
of unique values). Unfortunately, cardinality limits can bite you (and
your database) across not one, but three dimensions:

« Number of unique series (short example here)

o Number of unique values for each series (i.e., number of IP
addresses)

 Tags and number of combinations of tags on each series

If you anticipate very high cardinality (“very high” can depend on
the system, but it'’s on the order of tens to hundreds of millions of
unique series; or hundreds of millions or more of unique values),
then you may want to explore trying to store metrics data in col-
umn store databases that have fewer cardinality limits - but may
be slower and more resource intensive for running dozens or more
parallel queries. And modern dashboarding systems can sometimes
instantaneously generate hundreds of such queries per active user
per minute.

Data Storage and Query | 75

Table 2-2. Summary Table

Feature TSDB Strength TSDB Weakness

Data Model Time-stamped metric storage Poor handling of relational data

Performance High ingest rate, optimized reads High-cardinality + scaling challenges

Storage Efficient compression, Some TSDBs cause high I0PS when
downsampling periodically compacting data

Query Language & Time-based queries, native alerts Limited complex analytics (e.g., joins)
Alerts

Visualization & Native Grafana visualization Forming arbitrary relational-type
Integration support, ecosystem tools queries can be tricky or impossible

When to Use a TSDB for Network Telemetry. With all of that said, let me
break down exactly when a TSDB might be your best choice:

o You need real-time metrics, alerting, and short- to mid-term
analytics.

» You are operating at scale but with bounded cardinality (e.g.,
per-interface or per-device metrics).

» You want tight integration with monitoring stacks like Grafana,
Prometheus, or Telegraf, where it can be helpful to at least send
summaries in metrics form of more complex network telemetry
stored in other systems.

What TSDBs Aren't AS Good At. Conversely, here are the TSDB contra-
indications, or times when a TSDB is not your best option:

o Your telemetry involves high-cardinality dimensions like traffic
data (e.g., per IP - even IPv4 is 4B per source and dest IP), per
flow, or even per src/dst port combo (that is 4B potential as
well).

 You need rich contextual joins or long-term historical queries.

« Your environment demands high availability with complex
query workloads (you may need hybrid storage or data lake
integration).

Columnar

Columnar databases have risen to prominence in the last decade
and a half, and became popularized for telemetry and analytics with

76 | Chapter 2: Wrangling Telemetry

Google’s paper on their Dremel database. Most enterprise “Data
Lakes” or “Lakehouses” are now built on top of columnar databases.

Columnar systems look a lot like relational databases in terms of
shape of the data and queries possible, but store data column by
column instead of row by row, which has two key advantages:

1. The data is much more compressible on disk because columns
often have more similar (and thus more compressible) data; and

2. Much less data needs to be read because only the columns of
interest are retrieved

Self-run systems like DuckDB, Presto, and Clickhouse and cloud
databases like RedShift and BigQuery are leading columnar alterna-
tives.

Columnar databases are generally the best place to store network
traffic data, unless you need the ability to run full text queries. For
metrics (like SNMP and Streaming Telemetry), columnar systems
can work, but will generally be slower since they don’t have built-in
rollup support necessary when you have many users loading com-
plex dashboards with expectations of response times in seconds (or
less).

Table 2-3. Summary Table

Feature Columnar DB Strength Columnar DB Limitation
Query Fast analytics on large (an be slower for simple time series queries
Performance datasets because most lack built in aggregation/rollup

primitives, or support for millions+ of
materialized (cached) views

Storage Excellent compression, even Write amplification, especially with small

Efficiency with high cardinality batches

Schema Supports joins, SQL, metadata Does not support stored procedures; often does

Flexibility enrichment not support full SQL semantics

Ingest Pattern Good for batch inserts Not optimized for few-at-a-time inserts, work
very poorly or not at all for delayed data

Historical Ideal for long-term telemetry -

Analysis retention

Ecosystem Integrates with data lakes, Bl -

tools

When to Use Columnar Databases for Telemetry.

Data Storage and Query | 77

» You want to store and analyze massive volumes of historical
telemetry (e.g., months of NetFlow, sFlow, or other traffic data).

+ You need to enrich telemetry with metadata (e.g., ASN, geoloca-
tion, device inventory).

 Your team has the data engineering expertise necessary to man-
age ingestion, schema, and partitioning.

When NOT to Use Columnar Databases (i.e., What They Aren’t As Good At).
+ You require low-latency alerts or real-time dashboards.

 You have no pipeline to transform telemetry into a batch/col-
umnar format.

+ Your telemetry use case is primarily operational, not analytical.

Logs / Event storage databases

If you are storing log messages where the expectation is that they
will be regularly (if not frequently) parsed (searching for substrings
and/or breaking out sub-elements for various calculations), storing
them in relational databases (for low volume) or columnar databases
can work well - though doing so often requires adding a parsing
layer to extract the regular data.

But for more varied or arbitrary log data, relational and columnar
databases are typically very slow at the kind of full text search
required to operationalize these logs.

Leading log databases include Elastic, Victoria Logs, and Splunk.
However, it should be noted that there are both alternatives AND
emerging add-ons to columnar databases that try to provide fast full
text search at least on particular columns.

For structured logs, an interesting option is Loki. While not the best
for full text search, Loki integrates well with Prometheus to generate
metrics from recurring patterns in logs - and allow retrieving back
logs that contributed to those metrics.

Graph/topology/config

For those readers who were raised on relational database theory,
noSQL can feel like it was created by free-love hippies but it’s still
recognizable as a database. Graph databases, on the other hand, can
feel like M.C. Escher dropped acid and tried to re-create dBase III.

78 | Chapter 2: Wrangling Telemetry

For readers who struggle with the concept of what a graph database
is, just think about a mindmap tool (if you've used one).

Graph databases are designed to allow the query (and therefore dis-
play) of relationships between different objects. It should be noted
that the underlying data might be stored in tables, but more often
it’s stored in a structure that is distinctly noSQL-esque. So maybe it’s
NOT as foreign a concept as it seems at first.

Some kinds of network telemetry, particularly topology, can be
stored in many kinds of databases, but are more easily queryable
in graph databases like Neo4] or Amazon Neptune.

Some simple queries (“what’s immediately adjacent to node X”) can
be done in relational databases, but “what is the average distance
between nodes in my network” or “what nodes got further away
from my core yesterday” are much harder and usually require scrip-
ted or multi-step queries. This makes graph databases a logical
choice.

Despite their flexibility and ease of use for topology questions, many
organizations only add native graph databases after maturing most
of the rest of their network telemetry observability systems.

Table 2-4. Summary Table

Feature Graph DB Strength Graph DB Weakness
Relationship Fast traversals and multi-hop Learning curve for query languages
queries paths. Easy to query for changes
over time
Real-time - Integration with telemetry pipelines is
telemetry support not as strong
Flexibility Schema-less, extensible Slower to ingest/update large batches
Tooling/Integration Graph visualizers and APIs are Less mature for flexible querying than
available SQL/relational tools

When to Use Graph Databases for Topology.

» Your use case involves multi-hop analysis, impact tracing, or
route computation

» You operate layered topologies (e.g., physical + logical, tenant
overlays, SDN paths)

 You need to answer questions like:

Data Storage and Query | 79

— “What devices are between A and B?”

— “What changed between devices A and B?”
— “What’s the blast radius if router X fails?”
— “Which services depend on this VLAN?”

When Not to Use a Graph DB Alone.

» You need to process large-scale telemetry or time-series data
(flows, counters, metrics)

 You're focused more on analytics than modeling

 Your topology is simple, relatively static, or easily represented in
a relational model

When You Really Do Need Both (i.e., Hybrid Approach). Use a graph DB

for topology and relationships, and integrate it with:

o Time-series DB for real-time and trended metrics
+ Columnar DB for traffic logs and long-term analytics

« Relational DB for inventory, config, and business metadata

Streaming Database

Streaming databases like Kafka’s ksq]DB and AWS’s Kinesis use dif-
ferent techniques that take way less RAM and CPU to process large
amounts of data, and can generate results that look like relational
database queries with massively less effort than relational databases.

The two main trade-offs are that the results are generally approxi-
mate (think 99.9% but still not 100%), and you have to know the
queries in advance - you can't go back in time and ask a different
question because any data that’s not part of an existing query result
is immediately thrown out.

This makes streaming databases useful as a technique for processing
network telemetry when you have a stable set of questions, want to
be very efficient, and effectively can work with a static set of rollups.
Because most of the live data is thrown away it’s actually often more
efficient - and a lot more flexible - than TSDBs at rolling up data.

A note on Kafka: Kafka and other streaming systems are usually a
key part of modern enterprise observability systems and telemetry

80 | Chapter2: Wrangling Telemetry

buses. We're talking here about ksqlDB, not Kafka’s traditional data
queueing/storage. While the full breadth of a Kafka implementation
does have the ability to store (and therefore query) old data, please
don’t use this except for replaying raw data streams to components
that have failed or are restarting. It’s very un-performant to use it
as a historic data store and query it like was one, and can actually
create issues by interfering with live ingest of data (i.e., dropped
telemetry).

Key-Value Stores

Another database option is key/value store databases like Redis or
DynamoDB, which associate a value with various keys, and they
do so generally very flexibly. Some of these systems sit underneath
other databases but here we're talking about using them directly.

Key-value stores are not great for most types of telemetry. They
can be useful for metadata, but lack relational primitives that would
make querying and auditing metadata (i.e. interface name for a
router interface, to be used to join with NetFlow data) useful. How-
ever, it's usually a better pattern to store metadata in relational
databases.

Document Databases

Document databases like MongoDB, Couchbase, and others are
jacks of all trades, and you can use them for raw telemetry or
metadata, but converting data to JSON, storing, and querying it that
way is rarely the most efficient way to handle the raw telemetry and
it’s generally also more approachable to store metadata in relational
or other databases.

format and then using Java to process it is about the
most un-green thing you could think of doing, compu-
tationally, short of building a whole new datacenter
with only copper wiring, cooling it with freon, building
a nuclear power plant next door for electricity, and
then letting the reactor melt down.

m “Rarely the most efficient”?!? Converting data to ASCII

Data Storage and Query | 81

Chapter Summary

You made it to the end of a very detailed, VERY intense section.
Unless you are a particular type of monitoring and observabil-
ity groupie, you are probably feeling a little anxious, if not over-
whelmed. You might be asking how much of the previous chapter
you, personally, are going to have to deal with.

First, take a deep, cleansing breath.

Second, understand that Avi and I included this chapter NOT
because we feel everyone who uses observability will need to do
these things; but rather because we felt it was important for you
to know what is involved in network observability, what might (or
might not) be happening under the hood of the tools you use or are
considering.

We wanted you to be fully informed consumers, not just of network
observability tools, but of network observability data itself. And
a big part of being informed is understanding all the things that
(might or might not have) happened to your data between the
moment of collection and the moment of query.

82 | Chapter2: Wrangling Telemetry

About the Authors

Avi Freedman and Leon Adato have, collectively, over 70 years
experience in the tech industry, with particular focus on networking,
monitoring, and observability. Both recognize that, after the hard
work of building a solution is done - whether that be a network, a
datacenter, or an application - the hard work of keeping things run-
ning starts. And that’s usually where the problems really start. Their
decision to collaborate on this book arose first and foremost to share
all the samples, examples, stories, and lessons they usually share in
the booth at conferences, or in talks, or when helping customers;
but also to provide a resource to the readers themselves: who might
need to articulate those same lessons to colleagues, managers, or the
odd (very odd) person at a dinner party.

	Cover
	Copyright
	Kentik
	Table of Contents
	Brief Table of Contents (Not Yet Final)
	Introduction
	About Modern Network Telemetry
	What Is “the network,” exactly?
	What Is “network telemetry,” exactly?
	About You (“Is this book for me?”)
	About This Book: What Will I Learn?
	NOT About This Book: What WON’T I Learn?

	Chapter 1. Network and Telemetry Introduction
	What IS Network Telemetry, Redux
	Anatomy of a Network
	Network Routing/Switching Primitives
	Network Device “Layers”
	Device Types

	Common Telemetry Types: The Four Pillars
	Types of NETWORK Telemetry
	Drill-Down: Telemetry Types
	A Device-to-Telemetry Rosetta Stone

	Collecting data, network style
	Telemetry Deep Dive: SNMP and Streaming Telemetry
	Streaming Telemetry
	Telemetry Deep Dive: NetFlow, sFlow, and Other Traffic Sources
	Telemetry Deep Dive: API
	Telemetry Deep Dive: Synthetic Transactions
	Configuration management

	Chapter 2. Wrangling Telemetry
	Transport
	Inventory of Telemetry Producers and Consumers
	Sending direct to each system
	Pattern: Replicating to multiple network analytics systems
	Options to replicate telemetry: Separate replicators
	Observing the telemetry flow

	Enriching Telemetry
	What Is Enrichment?
	Types of Enrichment
	Building and management enrichment

	Normalizing Telemetry
	Unifying and Normalizing Telemetry
	Normalizing Device Metrics
	Normalizing traffic data
	Normalizing Performance Telemetry
	Normalizing Events / Logs
	Normalizing Other Telemetry Types

	Data Storage and Query
	Data storage, ingest, and query requirements
	Database Options

	Chapter Summary

	About the Authors

